Fractal dimension of the middle meningeal vessels: variation and evolution in Homo erectus , Neanderthals, and modern humans

2006 ◽  
Vol 42 (4-5) ◽  
pp. 217-224 ◽  
Author(s):  
Emiliano Bruner ◽  
Simone Mantini ◽  
Agostino Perna ◽  
Carlotta Maffei ◽  
Giorgio Manzi
2014 ◽  
Vol 112 (2) ◽  
pp. 366-371 ◽  
Author(s):  
Habiba Chirchir ◽  
Tracy L. Kivell ◽  
Christopher B. Ruff ◽  
Jean-Jacques Hublin ◽  
Kristian J. Carlson ◽  
...  

Humans are unique, compared with our closest living relatives (chimpanzees) and early fossil hominins, in having an enlarged body size and lower limb joint surfaces in combination with a relatively gracile skeleton (i.e., lower bone mass for our body size). Some analyses have observed that in at least a few anatomical regions modern humans today appear to have relatively low trabecular density, but little is known about how that density varies throughout the human skeleton and across species or how and when the present trabecular patterns emerged over the course of human evolution. Here, we test the hypotheses that (i) recent modern humans have low trabecular density throughout the upper and lower limbs compared with other primate taxa and (ii) the reduction in trabecular density first occurred in early Homo erectus, consistent with the shift toward a modern human locomotor anatomy, or more recently in concert with diaphyseal gracilization in Holocene humans. We used peripheral quantitative CT and microtomography to measure trabecular bone of limb epiphyses (long bone articular ends) in modern humans and chimpanzees and in fossil hominins attributed to Australopithecus africanus, Paranthropus robustus/early Homo from Swartkrans, Homo neanderthalensis, and early Homo sapiens. Results show that only recent modern humans have low trabecular density throughout the limb joints. Extinct hominins, including pre-Holocene Homo sapiens, retain the high levels seen in nonhuman primates. Thus, the low trabecular density of the recent modern human skeleton evolved late in our evolutionary history, potentially resulting from increased sedentism and reliance on technological and cultural innovations.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Anjali M Prabhat ◽  
Catherine K Miller ◽  
Thomas Cody Prang ◽  
Jeffrey Spear ◽  
Scott A Williams ◽  
...  

The evolution of bipedalism and reduced reliance on arboreality in hominins resulted in larger lower limb joints relative to the joints of the upper limb. The pattern and timing of this transition, however, remains unresolved. Here, we find the limb joint proportions of Australopithecus afarensis, Homo erectus, and Homo naledi to resemble those of modern humans, whereas those of A. africanus, Australopithecus sediba, Paranthropus robustus, Paranthropus boisei, Homo habilis, and Homo floresiensis are more ape-like. The homology of limb joint proportions in A. afarensis and modern humans can only be explained by a series of evolutionary reversals irrespective of differing phylogenetic hypotheses. Thus, the independent evolution of modern human-like limb joint proportions in A. afarensis is a more parsimonious explanation. Overall, these results support an emerging perspective in hominin paleobiology that A. afarensis was the most terrestrially adapted australopith despite the importance of arboreality throughout much of early hominin evolution.


Author(s):  
Rainer Kühne

I argue that the evidence of the Out-of-Africa hypothesis and the evidence of multiregional evolution of prehistorical humans can be understood if there has been interbreeding between Homo erectus, Homo neanderthalensis, and Homo sapiens at least during the preceding 700,000 years. These interbreedings require descendants who are capable of reproduction and therefore parents who belong to the same species. I suggest that a number of prehistorical humans who are at present regarded as belonging to different species belong in fact to one single species.  


Nature ◽  
2001 ◽  
Vol 414 (6864) ◽  
pp. 628-631 ◽  
Author(s):  
Christopher Dean ◽  
Meave G. Leakey ◽  
Donald Reid ◽  
Friedemann Schrenk ◽  
Gary T. Schwartz ◽  
...  

2005 ◽  
Vol 32 ◽  
pp. 221-232 ◽  
Author(s):  
Harald Haarmann

Since the earliest manifestations of symbolic activity in modern humans (Homo sapiens sapiens) in the Upper Palaeolithic, there is evidence for two independent cognitive procedures, for the production of representational images (naturalistic pictures or sculptures) and of abstract signs. The use of signs and symbols is attested for archaic humans (Homo neanderthalensis) and for Homo erectus while art in naturalistic style is an innovation among modern humans. The symbiotic interaction of the two symbolic capacities is illustrated for the visual heritage of Palaeolithic cave paintings in Southwestern Europe, for rock engravings in the Italian Alps (Val Camonica) and for the vivid use of signs and symbols in Southeastern Europe during the Neolithic. Around 5500 BC, sign use in Southeastern Europe reached a sophisticated stage of organization as to produce the earliest writing system of mankind. Since abstractness is the main theme in the visual heritage of the region, this script, not surprisingly, is composed of predominantly abstract signs.


Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 988
Author(s):  
Yameng Zhang ◽  
Xiujie Wu

The endocast was paid great attention in the study of human brain evolution. However, compared to that of the cerebrum, the cerebellar lobe is poorly studied regarding its morphology, function, and evolutionary changes in the process of human evolution. In this study, we define the major axis and four measurements to inspect possible asymmetric patterns within the genus Homo. Results show that significant asymmetry is only observed for the cerebellar length in modern humans and is absent in Homo erectus and Neanderthals. The influence of occipital petalia is obscure due to the small sample size for H. erectus and Neanderthals, while it has a significant influence over the asymmetries of cerebellar height and horizontal orientation in modern humans. Although the length and height of the Neanderthal cerebellum are comparable to that of modern humans, its sagittal orientation is closer to that of H. erectus, which is wider than that of modern humans. The cerebellar morphological difference between Neanderthals and modern humans is suggested to be related to high cognitive activities, such as social factors and language ability.


Nutrients ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1753 ◽  
Author(s):  
Peter Elias ◽  
Mary Williams

In response to a recent article by Jones et al. (Nutrients 10: 554–568, 2018) [1], we agree that three distinctive features evolved in Homo erectus prior to the emergence of modern humans.[...]


2007 ◽  
Vol 73 ◽  
pp. 39-58 ◽  
Author(s):  
T. E. G. Reynolds

In the 13 years since ‘Problems in the Stone Age of Southeast Asia’ was published, there has been a number of significant developments. There remains a lack of early cultural material despite the possibility that first occupation of the area may date back as far as 1.8 Myrs. It seems that the first hominins in the region were essentially ‘alithic’ in their adaptation, making the reconstruction of their behaviour extremely difficult. There is also a question as to which hominin was first ‘Out of Africa’ and into Asia and a suggestion that Homo erectus is, in fact, an Asian species that may have migrated west. This has important implications for interpretations of the significance of the so-called ‘Movius Line’. By the time stone tool use does appear regularly in the record, modern humans are present but it is still hard to identify the kinds of directional changes that are associated with the Late Pleistocene elsewhere in the world. The question of when humans were able to exploit tropical forests in the region is also one that recent work explores. The recent discoveries from Flores of stone tools that appear to pre-date the arrival of modern humans, and a possibly associated ‘dwarf’ hominin, Homo floresiensis, all require re-appraisal of the nature of human activity in the region.


2020 ◽  
Vol 6 (41) ◽  
pp. eabb4377
Author(s):  
Daniel García-Martínez ◽  
Markus Bastir ◽  
Asier Gómez-Olivencia ◽  
Bruno Maureille ◽  
Liubov Golovanova ◽  
...  

Ontogenetic studies provide clues for understanding important paleobiological aspects of extinct species. When compared to that of modern humans, the adult Neanderthal thorax was shorter, deeper, and wider. This is related to the wide Neanderthal body and is consistent with their hypothetical large requirements for energy and oxygen. Whether these differences were already established at birth or appeared later during development is unknown. To delve into this question, we use virtual reconstruction tools and geometric morphometrics to recover the 3D morphology of the ribcages of four Neanderthal individuals from birth to around 3 years old: Mezmaiskaya 1, Le Moustier 2, Dederiyeh 1, and Roc de Marsal. Our results indicate that the comparatively deep and short ribcage of the Neanderthals was already present at birth, as were other skeletal species-specific traits. This morphology possibly represents the plesiomorphic condition shared with Homo erectus, and it is likely linked to large energetic requirements.


2020 ◽  
Author(s):  
Axel Timmermann

Anatomically Modern Humans are the sole survivor of a group of hominins that inhabited our planet during the last ice age and that included, among others, Homo neanderthalensis, Homo denisova, and Homo erectus. Whether previous hominin extinctions were triggered by external factors, such as abrupt climate change, volcanic eruptions or whether competition and interbreeding played major roles in their demise still remains unresolved. Here I present a spatially resolved numerical hominin dispersal model (HDM) with empirically constrained key parameters that simulates the migration and interaction of Anatomically Modern Humans and Neanderthals in the rapidly varying climatic environment of the last ice age. The model simulations document that rapid temperature and vegetation changes associated with Dansgaard-Oeschger events were not major drivers of global Neanderthal extinction between 50-35 thousand years ago, but played important roles regionally, in particular over northern Europe. According to a series of parameter sensitivity experiments conducted with the HDM, a realistic extinction of the Neanderthal population can only be simulated when Homo sapiens is chosen to be considerably more effective in exploiting scarce glacial food resources as compared to Neanderthals.


Sign in / Sign up

Export Citation Format

Share Document