Biogas production performance of mesophilic and thermophilic anaerobic co-digestion with fat, oil, and grease in semi-continuous flow digesters: effects of temperature, hydraulic retention time, and organic loading rate

2013 ◽  
Vol 34 (13-14) ◽  
pp. 2125-2133 ◽  
Author(s):  
C. Li ◽  
P. Champagne ◽  
B. C. Anderson
Author(s):  
Napisa Pattharaprachayakul ◽  
Narumon Kesonlam ◽  
Pongpitak Duangjumpa ◽  
Vilai Rungsardthong ◽  
Worakrit Suvajittanont ◽  
...  

Pineapple wastes are produced in huge amount during the industrial canning process of pineapple; in Thailand over 400,000 tons per annum of canned pineapple exported leaving behind the waste. Besides the pulps and peels as solid wastes, the squeezed pineapple liquid wastes (SPLW) extracted from solid wastes can also be used for anaerobic digestion. In the present study, the anaerobic digestion of liquid squeezed from industrial pineapple peels was carried out using a lab-scale hybrid reactor. The reactor was operated for over 170 days with the hydraulic retention time (HRT) of 20 days decreasing down to 5 days and simultaneous control of organic loading rate (OLR). Under controlled conditions in the hybrid reactor, pH was maintained at 6.5–7.6 by adding alkaline for anaerobic microbial activity. Results showed that the chemical oxygen demand (COD) removal efficiency was at ≥ 90% for all conditions. The biogas production (mL/day) increased thoroughly from longer HRT to shorter HRT, as same as methane production with the maximum values (HRT 5 days, OLR 5 g/COD/ day with recirculation) of 55,130 and 30,322 mL/day, respectively. Moreover, the highest yields of biogas and methane were also investigated under similar conditions with the values of 0.504 and 0.277 L/gCOD, respectively. Interestingly, this optimization of both HRT and OLR of lab-scale anaerobic digestion process could be further practically applied to pilot or industrial scale in canned pineapple factories for biogas production.


2018 ◽  
Vol 7 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Agus Haryanto ◽  
Sugeng Triyono ◽  
Nugroho Hargo Wicaksono

The efficiency of biogas production in semi-continuous anaerobic digester is influenced by several factors, among other is loading rate. This research aimed at determining the effect of hydraulic retention time (HRT) on the biogas yield. Experiment was conducted using lab scale self-designed anaerobic digester of 36-L capacity with substrate of a mixture of fresh cow dung and water at a ratio of 1:1. Experiment was run with substrate initial amount of 25 L and five treatment variations of HRT, namely 1.31 gVS/L/d (P1), 2.47 gVS/L/d (P2), 3.82 gVS/L/d (P3), 5.35 gVS/L/d (P4) and 6.67 gVS/L/d (P5). Digester performance including pH, temperature, and biogas yield was measured every day. After stable condition was achieved, biogas composition was analyzed using a gas chromatograph. A 10-day moving average analysis of biogas production was performed to compare biogas yield of each treatment. Results showed that digesters run quite well with average pH of 6.8-7.0 and average daily temperature 28.7-29.1. The best biogas productivity (77.32 L/kg VSremoval) was found in P1 treatment (organic loading rate of 1.31 g/L/d) with biogas yield of 7.23 L/d. With methane content of 57.23% treatment P1 also produce the highest methane yield. Biogas production showed a stable rate after the day of 44. Modified Gompertz kinetic equation is suitable to model daily biogas yield as a function of digestion time.Article History: Received March 24th 2018; Received in revised form June 2nd 2018; Accepted June 16th 2018; Available onlineHow to Cite This Article: Haryanto, A., Triyono, S., and Wicaksono, N.H. (2018) Effect of Loading Rate on Biogas Production from Cow Dung in A Semi Continuous Anaerobic Digester. Int. Journal of Renewable Energy Development, 7(2), 93-100.https://doi.org/10.14710/ijred.7.2.93-100


2011 ◽  
Vol 64 (2) ◽  
pp. 320-325 ◽  
Author(s):  
J. Gustavsson ◽  
B. H. Svensson ◽  
A. Karlsson

The aim of this study was to investigate the effect of trace element supplementation on operation of wheat stillage-fed biogas tank reactors. The stillage used was a residue from bio-ethanol production, containing high levels of sulfate. In biogas production, high sulfate content has been associated with poor process stability in terms of low methane production and accumulation of process intermediates. However, the results of the present study show that this problem can be overcome by trace element supplementations. Four lab-scale wheat stillage-fed biogas tank reactors were operated for 345 days at a hydraulic retention time of 20 days (37 °C). It was concluded that daily supplementation with Co (0.5 mg L−1), Ni (0.2 mg L−1) and Fe (0.5 g L−1) were required for maintaining process stability at the organic loading rate of 4.0 g volatile solids L−1 day−1.


2020 ◽  
Author(s):  
Dejene Tsegaye Bedane ◽  
Mohammed Mazharuddin Khan ◽  
Seyoum Leta Asfaw

Abstract Background : Wastewater from agro-industries such as slaughterhouse is typical organic wastewater with high value of biochemical oxygen demand, chemical oxygen demand, biological organic nutrients (Nitrogen and phosphate) which are insoluble, slowly biodegradable solids, pathogenic and non-pathogenic bacteria and viruses, parasite eggs. Moreover it contains high protein and putrefies fast leading to environmental pollution problem. This indicates that slaughterhouses are among the most environmental polluting agro-industries. Anaerobic digestion is a sequence of metabolic steps involving consortiums of several microbial populations to form a complex metabolic interaction network resulting in the conversation of organic matter into methane (CH 4 ), carbon dioxide (CO 2 ) and other trace compounds. Separation of the phase permits the optimization of the organic loading rate and HRT based on the requirements of the microbial consortiums of each phase. The purpose of this study was to optimize the working conditions for the hydrolytic - acidogenic stage in two step/phase anaerobic digestion of slaughterhouse wastewater. The setup of the laboratory scale reactor was established at Center for Environmental Science, College of Natural Science with a total volume of 40 liter (36 liter working volume and 4 liter gas space). The working parameters for hydrolytic - acidogenic stage were optimized for six hydraulic retention time 1-6 days and equivalent organic loading rate of 5366.43 – 894.41 mg COD/L day to evaluate the effect of the working parameters on the performance of hydrolytic – acidogenic reactor. Result : The finding revealed that hydraulic retention time of 3 day with organic loading rate of 1,788.81 mg COD/L day was a as an optimal working conditions for the parameters under study for the hydrolytic - acidogenic stage. The degree of hydrolysis and acidification were mainly influenced by lower hydraulic retention time (higher organic loading rate) and highest values recorded were 63.92 % at hydraulic retention time of 3 day and 53.26% at hydraulic retention time of 2 day respectively. Conclusion : The finding of the present study indicated that at steady state the concentration of soluble chemical oxygen demand and total volatile fatty acids increase as hydraulic retention time decreased or organic loading rate increased from 1 day hydraulic retention time to 3 day hydraulic retention time and decreases as hydraulic retention time increase from 4 to 6 day. The lowest concentration of NH 4 + -N and highest degree of acidification was also achieved at hydraulic retention time of 3 day. Therefore, it can be concluded that hydraulic retention time of 3 day/organic loading rate of 1,788.81 mg COD/L .day was selected as an optimal working condition for the high performance and stability during the two stage anaerobic digestion of slaughterhouse wastewater for the hydrolytic-acidogenic stage under mesophilic temperature range selected (37.5℃). Keywords : Slaughterhouse Wastewater, Hydrolytic – Acidogenic, Two Phase Anaerobic Digestion, Optimal Condition, Agro-processing wastewater


2014 ◽  
Vol 31 (6) ◽  
pp. 317-323 ◽  
Author(s):  
Mahyar Ghorbanian ◽  
Robert M. Lupitskyy ◽  
Jagannadh V. Satyavolu ◽  
R. Eric Berson

2009 ◽  
Vol 12 (2) ◽  
pp. 29-38
Author(s):  
Phuoc Van Nguyen ◽  
Phuong Thi Thanh Nguyen ◽  
Thu Thi Le

Tapioca processing industry discharged into environment a significant amount of pollutants. Where, organic compounds, nutrient, and toxin CN- concentration exceeded Vietnamese discharged Standard up to hundreds of times. The study on biological hybrid system, combining aerobic biofilter and aerotank attained COD, N-NH3 treatment efficiencies in range of 98%, 95%, respectively at the optimal organic loading rate of 1 kg COD/m3.day, according to hydraulic retention time of one day. Biomass of microrganism in this system can reach to the value of 10,000 mg/L. The effluent reached to Vietnamese Standard 5945-2005, column B.


2018 ◽  
Vol 38 (2) ◽  
pp. 160 ◽  
Author(s):  
Istna Nafi Azzahrani ◽  
Fanny Arivia Davanti ◽  
Ria Millati ◽  
Muhammad Nur Cahyanto

In this study, experiments were conducted to investigate the effect of hydraulic retention time (HRT) and organic loading rate (OLR) on process stability of nata de coco wastewater anaerobic treatment using semi-continuous digester. The standard-rate anaerobic digester with working volume of 8.5 L was used to investigate the effect of three different hydraulic retention times (15, 20, and 25 days), and a standard-rate anaerobic digester with working volume of 9.1 L was operated at different organic loading rates of 0.5, 1, and 1.5 g/L/day. The findings revealed that minimum HRT for nata de coco wastewater anaerobic treatment using semi-continuous digester was achieved at HRT 20 days. Based on data from this study, the reduction of organic content in nata de coco wastewater increased when OLR increased until 1 g/L/day. But then those parameters value decreased when OLR being increased further to 1.5 g/L/day. It showed that at 1.5 g/L/day the amount of substrate fed to the system was exceeding the total degradation capacity of methanogenic microorganisms, hence the organic overload happened and decreased the efficiency of organic content reduction in anaerobic treatment of nata de coco wastewater.


Sign in / Sign up

Export Citation Format

Share Document