scholarly journals Somatostatin does not attenuate intestinal injury in dextran sodium sulphate-induced subacute colitis

1998 ◽  
Vol 7 (3) ◽  
pp. 169-173 ◽  
Author(s):  
J. D. van Bergeijk ◽  
M. E. van Meeteren ◽  
C. J. A. M. Tak ◽  
A. P. M. van Dijk ◽  
M. A. C. Meijssen ◽  
...  

From severalin vitroandin vivostudies involvement of som atostatin (SMS) in intestinal inflammation emerge. Acute colitis induced in rats is attenuated by the long-acting SMS analogue octreotide. We studied the potential beneficial effect of SMS on non-acute experimental colitis. BALB/c mice received either saline, SMS-14 (36 or 120 μg daily) or octreotide (3 μg daily) subcutaneously delivered by implant osmotic pumps. A non-acute colitis was induced by administration of dextran sodium sulphate (DSS) 10% in drinking water during 7 days. DSS evoked a mild, superficial pancolitis, most characterized by mucosal ulceration and submucosal influx of neutrophils. Neither SMS-14 nor octreotide reduced mucosal inflammatory score or macroscopical disease activity, although reduction of intestinal levels of interleukin1 β (IL-1 β), IL-6 and IL-10 during DSS was augmented both by SMS and octreotide. A slight increase of neutrophil influx was seen during SMS administration in animals not exposed to DSS. In conclusion, SMS or its long-acting analogue did not reduce intestinal inflammation in non-acute DSS-induced colitis. According to the cytokine profile observed, SMS-14 and octreotide further diminished the reduction of intestinal macrophage and Th2 lymphocyte activity.

2019 ◽  
Vol 12 (4) ◽  
pp. 919-929 ◽  
Author(s):  
Yongtao Xiao ◽  
Ying Lu ◽  
Ying Wang ◽  
Weihui Yan ◽  
Wei Cai

AbstractThe regenerating islet-derived family member 4 (Reg4) in the gastrointestinal tract is up-regulated during intestinal inflammation. However, the physiological function of Reg4 in the inflammation is largely unknown. In the current study, the functional roles and involved mechanisms of intestinal epithelial Reg4 in intestinal inflammation were studied in healthy and inflamed states using human intestinal specimens, an intestinal conditional Reg4 knockout mouse (Reg4ΔIEC) model and dextran sulfate sodium (DSS)-induced colitis model. We showed that the elevated serum Reg4 in pediatric intestinal failure (IF) patients were positively correlated with the serum concentrations of proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α). In inflamed intestine of IF patients, the crypt base Reg4 protein was increased and highly expressed towards the luminal face. The Reg4 was indicated as a novel target of activating transcription factor 2 (ATF2) that enhanced Reg4 expression during the intestinal inflammation. In vivo, the DSS-induced colitis was significantly ameliorated in Reg4ΔIEC mice. Reg4ΔIEC mice altered the colonic bacterial composition and reduced the bacteria adhere to the colonic epithelium. In vitro, Reg4 was showed to promote the growth of colonic organoids, and that this occurs through a mechanism involving activation of signal transducer and activator of transcription 3 (STAT3). In conclusion, our findings demonstrated intestinal-epithelial Reg4 deficiency protects against experimental colitis and mucosal injury via a mechanism involving alteration of bacterial homeostasis and STAT3 activation.


2011 ◽  
Vol 2011 ◽  
pp. 1-13 ◽  
Author(s):  
Manuel Oliveira ◽  
Nabil Bosco ◽  
Genevieve Perruisseau ◽  
Jeanne Nicolas ◽  
Iris Segura-Roggero ◽  
...  

Studies showed that specific probiotics provide therapeutic benefits in inflammatory bowel disease.In vitroevidence suggested thatLactobacillus paracaseialso called ST11 (CNCM I-2116) is a potent strain with immune modulation properties. However, little is known about its capacity to alleviate inflammatory symptomsin vivoIn this context, the main objective of this study was to investigate the role of ST11 on intestinal inflammation using the adoptive transfer mouse model of experimental colitis. Rag2-/-recipient mice were fed with ST11 (109CFU/day)a month prior toinduce colitis by adoptive transfer of naive T cells. One month later, in clear contrast to nonfed mice, weight loss was significantly reduced by 50% in ST11-fed mice. Further analysis of colon specimens revealed a significant reduction neutrophil infiltration and mucosal expression of IL1β, IL-6, and IL12 proinflammatory cytokines, whereas no consistent differences in expression of antibacterial peptides or tight junction proteins were observed between PBS and ST11-fed mice. All together, our results demonstrate that oral administration of ST11 was safe and had a significant preventive effect on colitis. We conclude that probiotics such asLactobacillus paracaseiharbor worthwhilein vivoimmunomodulatory properties to prevent intestinal inflammation by nutritional approaches.


2021 ◽  
Vol 12 ◽  
Author(s):  
Paulo José Basso ◽  
Helioswilton Sales-Campos ◽  
Viviani Nardini ◽  
Murillo Duarte-Silva ◽  
Vanessa Beatriz Freitas Alves ◽  
...  

The current therapeutic options for Inflammatory Bowel Diseases (IBD) are limited. Even using common anti-inflammatory, immunosuppressive or biological therapies, many patients become unresponsive to the treatments, immunosuppressed or unable to restrain secondary infections. Statins are cholesterol-lowering drugs with non-canonical anti-inflammatory properties, whose underlying mechanisms of action still remain poorly understood. Here, we described that in vitro atorvastatin (ATO) treatment was not toxic to splenocytes, constrained cell proliferation and modulated IL-6 and IL-10 production in a dose-dependent manner. Mice exposed to dextran sulfate sodium (DSS) for colitis induction and treated with ATO shifted their immune response from Th17 towards Th2, improved the clinical and histological aspects of intestinal inflammation and reduced the number of circulating leukocytes. Both experimental and in silico analyses revealed that PPAR-α expression is reduced in experimental colitis, which was reversed by ATO treatment. While IBD patients also downregulate PPAR-α expression, the responsiveness to biological therapy relied on the restoration of PPAR-α levels. Indeed, the in vitro and in vivo effects induced by ATO treatment were abrogated in Ppara-/- mice or leukocytes. In conclusion, the beneficial effects of ATO in colitis are dependent on PPAR-α, which could also be a potential predictive biomarker of therapy responsiveness in IBD.


2020 ◽  
Vol 11 (1) ◽  
pp. 1098-1109 ◽  
Author(s):  
Wei Guo ◽  
Suqin Zhu ◽  
Guangxin Feng ◽  
Lingyu Wu ◽  
Yinong Feng ◽  
...  

Aqueous extracts from Chlorella pyrenoidosa, Spirulina platensis and Synechococcus sp. PCC 7002 showed gut protective potential in vitro and in vivo.


2021 ◽  
Vol 12 ◽  
Author(s):  
Lianlian Tian ◽  
Jun-Long Zhao ◽  
Jian-Qin Kang ◽  
Shi-bo Guo ◽  
Nini Zhang ◽  
...  

Inflammatory bowel disease (IBD) is characterized by chronic and relapsing intestinal inflammation, which currently lacks safe and effective medicine. Some previous studies indicated that Astragaloside IV (AS-IV), a natural saponin extracted from the traditional Chinese medicine herb Ligusticum chuanxiong, alleviates the experimental colitis symptoms in vitro and in vivo. However, the mechanism of AS-IV on IBD remains unclear. Accumulating evidence suggests that M2-polarized intestinal macrophages play a pivotal role in IBD progression. Here, we found that AS-IV attenuated clinical activity of DSS-induced colitis that mimics human IBD and resulted in the phenotypic transition of macrophages from immature pro-inflammatory macrophages to mature pro-resolving macrophages. In vitro, the phenotype changes of macrophages were observed by qRT-PCR after bone marrow-derived macrophages (BMDMs) were induced to M1/M2 and incubated with AS-IV, respectively. In addition, AS-IV was effective in inhibiting pro-inflammatory macrophages and promoting the pro-resolving macrophages to ameliorate experimental colitis via the regulation of the STAT signaling pathway. Hence, we propose that AS-IV can ameliorate experimental colitis partially by modulating macrophage phenotype by remodeling the STAT signaling, which seems to have an essential function in the ability of AS-IV to alleviate the pathological progress of IBD.


2017 ◽  
Vol 312 (1) ◽  
pp. G77-G84 ◽  
Author(s):  
Vijayababu M. Radhakrishnan ◽  
Maryam M. Gilpatrick ◽  
Nour Alhoda Parsa ◽  
Pawel R. Kiela ◽  
Fayez K. Ghishan

It has been hypothesized that apically expressed L-type Ca2+channel Cav1.3 (encoded by CACNA1D gene) contributes toward an alternative TRPV6-independent route of intestinal epithelial Ca2+absorption, especially during digestion when high luminal concentration of Ca2+and other nutrients limit TRPV6 contribution. We and others have implicated altered expression and activity of key mediators of intestinal and renal Ca2+(re)absorption as contributors to negative systemic Ca2+balance and bone loss in intestinal inflammation. Here, we investigated the effects of experimental colitis and related inflammatory mediators on colonic Cav1.3 expression. We confirmed Cav1.3 expression within the segments of the mouse and human gastrointestinal tract. Consistent with available microarray data (GEO database) from inflammatory bowel disease (IBD) patients, mouse colonic expression of Cav1.3 was significantly reduced in trinitrobenzene sulfonic acid (TNBS) colitis. In vitro, IFNγ most potently reduced Cav1.3 expression. We reproduced these findings in vivo with wild-type and Stat1−/−mice injected with IFNγ. The observed effect in Stat1−/−suggested a noncanonical transcriptional repression or a posttranscriptional mechanism. In support of the latter, we observed no effect on the cloned Cav1.3 gene promoter activity and accelerated Cav1.3 mRNA decay rate in IFNγ-treated HCT116 cells. While the relative contribution of Cav1.3 to intestinal Ca2+absorption and its value as a therapeutic target remain to be established, we postulate that Cav1.3 downregulation in IBD may contribute to the negative systemic Ca2+balance, to increased bone resorption, and to reduced bone mineral density in IBD patients.


2019 ◽  
Vol 20 (2) ◽  
pp. 321 ◽  
Author(s):  
Clovis Bortolus ◽  
Muriel Billamboz ◽  
Rogatien Charlet ◽  
Karine Lecointe ◽  
Boualem Sendid ◽  
...  

Resistance of the opportunistic pathogen Candida albicans to antifungal drugs has increased significantly in recent years. After screening 55 potential antifungal compounds from a chemical library, 2,3-dihydroxy-4-methoxybenzaldehyde (DHMB) was identified as having potential antifungal activity. The properties of DHMB were then assessed in vitro and in vivo against C. albicans overgrowth and intestinal inflammation. Substitution on the aromatic ring of DHMB led to a strong decrease in its biological activity against C. albicans. The MIC of DHMB was highly effective at eliminating C. albicans when compared to that of caspofungin or fluconazole. Additionally, DHMB was also effective against clinically isolated fluconazole- or caspofungin-resistant C. albicans strains. DHMB was administered to animals at high doses. This compound was not cytotoxic and was well-tolerated. In experimental dextran sodium sulphate (DSS)-induced colitis in mice, DHMB reduced the clinical and histological score of inflammation and promoted the elimination of C. albicans from the gut. This finding was supported by a decrease in aerobic bacteria while anaerobic bacteria populations were re-established in mice treated with DHMB. DHMB is a small organic molecule with antifungal properties and anti-inflammatory activity by exerting protective effects on intestinal epithelial cells.


1971 ◽  
Vol 66 (3) ◽  
pp. 558-576 ◽  
Author(s):  
Gerald Burke

ABSTRACT A long-acting thyroid stimulator (LATS), distinct from pituitary thyrotrophin (TSH), is found in the serum of some patients with Graves' disease. Despite the marked physico-chemical and immunologic differences between the two stimulators, both in vivo and in vitro studies indicate that LATS and TSH act on the same thyroidal site(s) and that such stimulation does not require penetration of the thyroid cell. Although resorption of colloid and secretion of thyroid hormone are early responses to both TSH and LATS, available evidence reveals no basic metabolic pathway which must be activated by these hormones in order for iodination reactions to occur. Cyclic 3′, 5′-AMP appears to mediate TSH and LATS effects on iodination reactions but the role of this compound in activating thyroidal intermediary metabolism is less clear. Based on the evidence reviewed herein, it is suggested that the primary site of action of thyroid stimulators is at the cell membrane and that beyond the(se) primary control site(s), there exists a multifaceted regulatory system for thyroid hormonogenesis and cell growth.


2021 ◽  
Vol 22 (2) ◽  
pp. 772
Author(s):  
Javier Conde ◽  
Marlene Schwarzfischer ◽  
Egle Katkeviciute ◽  
Janine Häfliger ◽  
Anna Niechcial ◽  
...  

Environmental and genetic factors have been demonstrated to contribute to the development of inflammatory bowel disease (IBD). Recent studies suggested that the food additive; titanium dioxide (TiO2) might play a causative role in the disease. Therefore, in the present study we aimed to explore the interaction between the food additive TiO2 and the well-characterized IBD risk gene protein tyrosine phosphatase non-receptor type 2 (Ptpn2) and their role in the development of intestinal inflammation. Dextran sodium sulphate (DSS)-induced acute colitis was performed in mice lacking the expression of Ptpn2 in myeloid cells (Ptpn2LysMCre) or their wild type littermates (Ptpn2fl/fl) and exposed to the microparticle TiO2. The impact of Ptpn2 on TiO2 signalling pathways and TiO2-induced IL-1β and IL-10 levels were studied using bone marrow-derived macrophages (BMDMs). Ptpn2LysMCre exposed to TiO2 exhibited more severe intestinal inflammation than their wild type counterparts. This effect was likely due to the impact of TiO2 on the differentiation of intestinal macrophages, suppressing the number of anti-inflammatory macrophages in Ptpn2 deficient mice. Moreover, we also found that TiO2 was able to induce the secretion of IL-1β via mitogen-activated proteins kinases (MAPKs) and to repress the expression of IL-10 in bone marrow-derived macrophages via MAPK-independent pathways. This is the first evidence of the cooperation between the genetic risk factor Ptpn2 and the environmental factor TiO2 in the regulation of intestinal inflammation. The results presented here suggest that the ingestion of certain industrial compounds should be taken into account, especially in individuals with increased genetic risk


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1210
Author(s):  
Xieguo Yan ◽  
Shiqiang Wang ◽  
Kaoxiang Sun

Schizophrenia, a psychiatric disorder, requires long-term treatment; however, large fluctuations in blood drug concentration increase the risk of adverse reactions. We prepared a long-term risperidone (RIS) implantation system that can stabilize RIS release and established in-vitro and in-vivo evaluation systems. Cumulative release, drug loading, and entrapment efficiency were used as evaluation indicators to evaluate the effects of different pore formers, polymer ratios, porogen concentrations, and oil–water ratios on a RIS implant (RIS-IM). We also built a mathematical model to identify the optimized formulation by stepwise regression. We also assessed the crystalline changes, residual solvents, solubility and stability after sterilization, in-vivo polymer degradation, pharmacokinetics, and tissue inflammation in the case of the optimized formulation. The surface of the optimized RIS microspheres was small and hollow with 134.4 ± 3.5 µm particle size, 1.60 SPAN, 46.7% ± 2.3% implant drug loading, and 93.4% entrapment efficiency. The in-vitro dissolution behavior of RIS-IM had zero-order kinetics and stable blood concentration; no lag time was released for over three months. Furthermore, the RIS-IM was not only non-irritating to tissues but also had good biocompatibility and product stability. Long-acting RIS-IMs with microspheres and film coatings can provide a new avenue for treating schizophrenia.


Sign in / Sign up

Export Citation Format

Share Document