scholarly journals Correlation between genomic analyses with metatranscriptomic study reveals various functional pathways ofClostridium sartagoformeAAU1, a buffalo rumen isolate

2015 ◽  
Vol 44 (1) ◽  
pp. 498-507 ◽  
Author(s):  
Neelam M. Nathani ◽  
Srinivas M. Duggirala ◽  
Vaibhav D. Bhatt ◽  
Amrutlal K Patel ◽  
Ramesh K. Kothari ◽  
...  
2011 ◽  
Vol 33 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Xing-Hua PAN ◽  
Hai-Ying ZHU ◽  
Sadie L MARJANI

2020 ◽  
Author(s):  
Shilin Tian ◽  
Xuming Zhou ◽  
Dejing Zhang ◽  
Chunyou Ning ◽  
Diyan Li ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Yosuke Yamada ◽  
Cleo-Aron Weis ◽  
Julian Thelen ◽  
Carsten Sticht ◽  
Berthold Schalke ◽  
...  

Author(s):  
Jay F Storz

AbstractPopulation genomic analyses of high-altitude humans and other vertebrates have identified numerous candidate genes for hypoxia adaptation, and the physiological pathways implicated by such analyses suggest testable hypotheses about underlying mechanisms. Studies of highland natives that integrate genomic data with experimental measures of physiological performance capacities and subordinate traits are revealing associations between genotypes (e.g., hypoxia-inducible factor gene variants) and hypoxia-responsive phenotypes. The subsequent search for causal mechanisms is complicated by the fact that observed genotypic associations with hypoxia-induced phenotypes may reflect second-order consequences of selection-mediated changes in other (unmeasured) traits that are coupled with the focal trait via feedback regulation. Manipulative experiments to decipher circuits of feedback control and patterns of phenotypic integration can help identify causal relationships that underlie observed genotype–phenotype associations. Such experiments are critical for correct inferences about phenotypic targets of selection and mechanisms of adaptation.


2021 ◽  
Vol 22 (11) ◽  
pp. 6083
Author(s):  
Aintzane Rueda-Martínez ◽  
Aiara Garitazelaia ◽  
Ariadna Cilleros-Portet ◽  
Sergi Marí ◽  
Rebeca Arauzo ◽  
...  

Endometriosis is a common gynecological disorder that has been associated with endometrial, breast and epithelial ovarian cancers in epidemiological studies. Since complex diseases are a result of multiple environmental and genetic factors, we hypothesized that the biological mechanism underlying their comorbidity might be explained, at least in part, by shared genetics. To assess their potential genetic relationship, we performed a two-sample mendelian randomization (2SMR) analysis on results from public genome-wide association studies (GWAS). This analysis confirmed previously reported genetic pleiotropy between endometriosis and endometrial cancer. We present robust evidence supporting a causal genetic association between endometriosis and ovarian cancer, particularly with the clear cell and endometrioid subtypes. Our study also identified genetic variants that could explain those associations, opening the door to further functional experiments. Overall, this work demonstrates the value of genomic analyses to support epidemiological data, and to identify targets of relevance in multiple disorders.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Josué Barrera-Redondo ◽  
Guillermo Sánchez-de la Vega ◽  
Jonás A. Aguirre-Liguori ◽  
Gabriela Castellanos-Morales ◽  
Yocelyn T. Gutiérrez-Guerrero ◽  
...  

AbstractDespite their economic importance and well-characterized domestication syndrome, the genomic impact of domestication and the identification of variants underlying the domestication traits in Cucurbita species (pumpkins and squashes) is currently lacking. Cucurbita argyrosperma, also known as cushaw pumpkin or silver-seed gourd, is a Mexican crop consumed primarily for its seeds rather than fruit flesh. This makes it a good model to study Cucurbita domestication, as seeds were an essential component of early Mesoamerican diet and likely the first targets of human-guided selection in pumpkins and squashes. We obtained population-level data using tunable Genotype by Sequencing libraries for 192 individuals of the wild and domesticated subspecies of C. argyrosperma across Mexico. We also assembled the first high-quality wild Cucurbita genome. Comparative genomic analyses revealed several structural variants and presence/absence of genes related to domestication. Our results indicate a monophyletic origin of this domesticated crop in the lowlands of Jalisco. We found evidence of gene flow between the domesticated and wild subspecies, which likely alleviated the effects of the domestication bottleneck. We uncovered candidate domestication genes that are involved in the regulation of growth hormones, plant defense mechanisms, seed development, and germination. The presence of shared selected alleles with the closely related species Cucurbita moschata suggests domestication-related introgression between both taxa.


Gene ◽  
2021 ◽  
pp. 145715
Author(s):  
Ying Zhang ◽  
Zhengfeng Wang ◽  
Yanan Guo ◽  
Sheng Chen ◽  
Xianyi Xu ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Yan Deng ◽  
Shenqiang Hu ◽  
Chenglong Luo ◽  
Qingyuan Ouyang ◽  
Li Li ◽  
...  

Abstract Background During domestication, remarkable changes in behavior, morphology, physiology and production performance have taken place in farm animals. As one of the most economically important poultry, goose owns a unique appearance characteristic called knob, which is located at the base of the upper bill. However, neither the histomorphology nor the genetic mechanism of the knob phenotype has been revealed in geese. Results In the present study, integrated radiographic, histological, transcriptomic and genomic analyses revealed the histomorphological characteristics and genetic mechanism of goose knob. The knob skin was developed, and radiographic results demonstrated that the knob bone was obviously protuberant and pneumatized. Histologically, there were major differences in structures in both the knob skin and bone between geese owing knob (namely knob-geese) and those devoid of knob (namely non-knob geese). Through transcriptome analysis, 592 and 952 genes differentially expressed in knob skin and bone, and significantly enriched in PPAR and Calcium pathways in knob skin and bone, respectively, which revealed the molecular mechanisms of histomorphological differences of the knob between knob- and non-knob geese. Furthermore, integrated transcriptomic and genomic analysis contributed to the identification of 17 and 21 candidate genes associated with the knob formation in the skin and bone, respectively. Of them, DIO2 gene could play a pivotal role in determining the knob phenotype in geese. Because a non-synonymous mutation (c.642,923 G > A, P265L) changed DIO2 protein secondary structure in knob geese, and Sanger sequencing further showed that the AA genotype was identified in the population of knob geese, and was prevalent in a crossing population which was artificially selected for 10 generations. Conclusions This study was the first to uncover the knob histomorphological characteristics and genetic mechanism in geese, and DIO2 was identified as the crucial gene associated with the knob phenotype. These data not only expand and enrich our knowledge on the molecular mechanisms underlying the formation of head appendages in both mammalian and avian species, but also have important theoretical and practical significance for goose breeding.


Sign in / Sign up

Export Citation Format

Share Document