Technological advances in single-cell genomic analyses

2011 ◽  
Vol 33 (1) ◽  
pp. 17-24 ◽  
Author(s):  
Xing-Hua PAN ◽  
Hai-Ying ZHU ◽  
Sadie L MARJANI
Author(s):  
Samuel Melton ◽  
Sharad Ramanathan

Abstract Motivation Recent technological advances produce a wealth of high-dimensional descriptions of biological processes, yet extracting meaningful insight and mechanistic understanding from these data remains challenging. For example, in developmental biology, the dynamics of differentiation can now be mapped quantitatively using single-cell RNA sequencing, yet it is difficult to infer molecular regulators of developmental transitions. Here, we show that discovering informative features in the data is crucial for statistical analysis as well as making experimental predictions. Results We identify features based on their ability to discriminate between clusters of the data points. We define a class of problems in which linear separability of clusters is hidden in a low-dimensional space. We propose an unsupervised method to identify the subset of features that define a low-dimensional subspace in which clustering can be conducted. This is achieved by averaging over discriminators trained on an ensemble of proposed cluster configurations. We then apply our method to single-cell RNA-seq data from mouse gastrulation, and identify 27 key transcription factors (out of 409 total), 18 of which are known to define cell states through their expression levels. In this inferred subspace, we find clear signatures of known cell types that eluded classification prior to discovery of the correct low-dimensional subspace. Availability and implementation https://github.com/smelton/SMD. Supplementary information Supplementary data are available at Bioinformatics online.


2015 ◽  
Vol 112 (21) ◽  
pp. 6545-6550 ◽  
Author(s):  
Rosemary M. Onjiko ◽  
Sally A. Moody ◽  
Peter Nemes

Spatial and temporal changes in molecular expression are essential to embryonic development, and their characterization is critical to understand mechanisms by which cells acquire different phenotypes. Although technological advances have made it possible to quantify expression of large molecules during embryogenesis, little information is available on metabolites, the ultimate indicator of physiological activity of the cell. Here, we demonstrate that single-cell capillary electrophoresis-electrospray ionization mass spectrometry is able to test whether differential expression of the genome translates to the domain of metabolites between single embryonic cells. Dissection of three different cell types with distinct tissue fates from 16-cell embryos of the South African clawed frog (Xenopus laevis) and microextraction of their metabolomes enabled the identification of 40 metabolites that anchored interconnected central metabolic networks. Relative quantitation revealed that several metabolites were differentially active between the cell types in the wild-type, unperturbed embryos. Altering postfertilization cytoplasmic movements that perturb dorsal development confirmed that these three cells have characteristic small-molecular activity already at cleavage stages as a result of cell type and not differences in pigmentation, yolk content, cell size, or position in the embryo. Changing the metabolite concentration caused changes in cell movements at gastrulation that also altered the tissue fates of these cells, demonstrating that the metabolome affects cell phenotypes in the embryo.


Author(s):  
Dongshunyi Li ◽  
Jun Ding ◽  
Ziv Bar-Joseph

Abstract Motivation Recent technological advances enable the profiling of spatial single-cell expression data. Such data present a unique opportunity to study cell–cell interactions and the signaling genes that mediate them. However, most current methods for the analysis of these data focus on unsupervised descriptive modeling, making it hard to identify key signaling genes and quantitatively assess their impact. Results We developed a Mixture of Experts for Spatial Signaling genes Identification (MESSI) method to identify active signaling genes within and between cells. The mixture of experts strategy enables MESSI to subdivide cells into subtypes. MESSI relies on multi-task learning using information from neighboring cells to improve the prediction of response genes within a cell. Applying the methods to three spatial single-cell expression datasets, we show that MESSI accurately predicts the levels of response genes, improving upon prior methods and provides useful biological insights about key signaling genes and subtypes of excitatory neuron cells. Availability and implementation MESSI is available at: https://github.com/doraadong/MESSI


2018 ◽  
Author(s):  
Standwell C. Nkhoma ◽  
Simon G. Trevino ◽  
Karla M. Gorena ◽  
Shalini Nair ◽  
Stanley Khoswe ◽  
...  

Malaria patients can carry one or more clonal lineage of the parasite, Plasmodium falciparum, but the composition of these infections cannot be directly inferred from bulk sequence data. Well-defined, complete haplotypes at single-cell resolution are ideal for describing within-host population structure and unambiguously determining parasite diversity, transmission dynamics and recent ancestry but have not been analyzed on a large scale. We generated 485 near-complete single-cell genome sequences isolated from fifteen P. falciparum patients from Chikhwawa, Malawi, an area of intense malaria transmission. Matched single-cell and bulk genomic analyses revealed patients harbored up to seventeen unique lineages. Estimation of parasite relatedness within patients suggests superinfection by repeated mosquito bites is rarer than co-transmission of parasites from a single mosquito. Our single-cell analysis indicates strong barriers to establishment of new infections in malaria-infected patients and allows high resolution dissection of intra-host variation in malaria parasites.


2019 ◽  
Author(s):  
Shuoguo Wang ◽  
Constance Brett ◽  
Mohan Bolisetty ◽  
Ryan Golhar ◽  
Isaac Neuhaus ◽  
...  

AbstractMotivationThanks to technological advances made in the last few years, we are now able to study transcriptomes from thousands of single cells. These have been applied widely to study various aspects of Biology. Nevertheless, comprehending and inferring meaningful biological insights from these large datasets is still a challenge. Although tools are being developed to deal with the data complexity and data volume, we do not have yet an effective visualizations and comparative analysis tools to realize the full value of these datasets.ResultsIn order to address this gap, we implemented a single cell data visualization portal called Single Cell Viewer (SCV). SCV is an R shiny application that offers users rich visualization and exploratory data analysis options for single cell datasets.AvailabilitySource code for the application is available online at GitHub (http://www.github.com/neuhausi/single-cell-viewer) and there is a hosted exploration application using the same example dataset as this publication at http://periscopeapps.org/[email protected]; [email protected]


2021 ◽  
Vol 8 ◽  
Author(s):  
Zhehao Dai ◽  
Seitaro Nomura

Cardiovascular diseases are among the leading causes of morbidity and mortality worldwide. Although the spectrum of the heart from development to disease has long been studied, it remains largely enigmatic. The emergence of single-cell omics technologies has provided a powerful toolbox for defining cell heterogeneity, unraveling previously unknown pathways, and revealing intercellular communications, thereby boosting biomedical research and obtaining numerous novel findings over the last 7 years. Not only cell atlases of normal and developing hearts that provided substantial research resources, but also some important findings regarding cell-type-specific disease gene program, could never have been established without single-cell omics technologies. Herein, we briefly describe the latest technological advances in single-cell omics and summarize the major findings achieved by such approaches, with a focus on development and homeostasis of the heart, myocardial infarction, and heart failure.


2017 ◽  
Author(s):  
Valentine Svensson ◽  
Sarah A Teichmann ◽  
Oliver Stegle

Technological advances have enabled low-input RNA-sequencing, paving the way for assaying transcriptome variation in spatial contexts, including in tissues. While the generation of spatially resolved transcriptome maps is increasingly feasible, computational methods for analysing the resulting data are not established. Existing analysis strategies either ignore the spatial component of gene expression variation, or require discretization of the cells into coarse grained groups.To address this, we have developed SpatialDE, a computational framework for identifying and characterizing spatially variable genes. Our method generalizes variable gene selection, as used in population-and single-cell studies, to spatial expression profiles. To illustrate the broad utility of our approach, we apply SpatialDE to spatial transcriptomics data, and to data from single cell methods based on multiplexed in situ hybridisation (SeqFISH and MERFISH). SpatialDE enables the statistically robust identification of spatially variable genes, thereby identifying genes with known disease implications, several of which are missed by conventional variable gene selection. Additionally, to enable gene-expressed based histology, SpatialDE implements a spatial gene clustering model which we call “automatic expression histology,” allowing to classify genes into groups with distinct spatial patterns.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yu-Sheng Wang ◽  
Jia Guo

The ability to quantify a large number of varied transcripts in single cells in their native spatial context is crucial to accelerate our understanding of health and disease. Bulk cell RNA analysis masks the heterogeneity in the cell population, while the conventional RNA imaging approaches suffer from low multiplexing capacity. Recent advances in multiplexed fluorescence in situ hybridization (FISH) methods enable comprehensive RNA profiling in individual cells in situ. These technologies will have wide applications in many biological and biomedical fields, including cell type classification, signaling network analysis, tissue architecture, disease diagnosis and patient stratification, etc. In this minireview, we will present the recent technological advances of multiplexed single-cell in situ RNA profiling assays, discuss their advantages and limitations, describe their biological applications, highlight the current challenges, and propose potential solutions.


2018 ◽  
Vol 30 (1) ◽  
pp. 73 ◽  
Author(s):  
Ramiro Alberio

Mammalian embryo development is characterised by regulative mechanisms of lineage segregation and cell specification. A combination of carefully orchestrated gene expression networks, signalling pathways and epigenetic marks defines specific developmental stages that can now be resolved at the single-cell level. These new ways to depict developmental processes have the potential to provide answers to unresolved questions on how lineage allocation and cell fate decisions are made during embryogenesis. Over the past few years, a flurry of studies reporting detailed single-cell transcription profiles in early embryos has complemented observations acquired using live cell imaging following gene editing techniques to manipulate specific genes. The adoption of this newly available toolkit is reshaping how researchers are designing experiments and how they view animal development. This review presents an overview of the current knowledge on lineage segregation and cell specification in mammals, and discusses some of the outstanding questions that current technological advances can help scientists address, like never before.


Sign in / Sign up

Export Citation Format

Share Document