Thermal Behavior in Tilting Pad Journal Bearings

1990 ◽  
Vol 33 (2) ◽  
pp. 247-253 ◽  
Author(s):  
Donald F. Wilcock ◽  
E. Richard Booser
2020 ◽  
Vol 10 (10) ◽  
pp. 3529
Author(s):  
Sung-Hwa Jeung ◽  
Junho Suh ◽  
Hyun Sik Yoon

This paper presents the change of non-dimensional characteristics and thermal behavior of different sized tilting pad journal bearings (TPJBs) with the same Sommerfeld number. A three-dimensional (3D) TPJB numerical model is provided considering the thermo-elastic hydro-dynamic (TEHD) lubrication model with pad thermal-elastic deformation. The pivot stiffness is assumed to be the combination of linear and cubic stiffness based on the Hertzian contact theory. The TPJBs in a configuration of load between pad (LBP) with the same Sommerfeld number having seven different sizes are simulated, and their non-dimensional dynamic and static characteristics and thermal behavior are compared. Pad thermal and elastic deformation are both taken into account. If the changes in lubricant viscosity, thermal deformation, and elastic deformation of journal/pads due to viscous shearing are ignored, the bearings with identical Sommerfeld numbers should show the same performance characteristics. However, the heat generation at the bearing clearance during operation (a) induces a decrease in viscosity and heat transfer to journal/pads and (b) results in a thermal deformation. Furthermore, the elastic deformation of the tilting pads and pivots also affects the bearing dynamic performance. For the same Sommerfeld number, the numerical analyses provide how the viscous shearing and elastic deformation lead to a change in bearing performance. For the small bearings with the same Sommerfeld number, the non-dimensional characteristics did not change significantly, where the heat generation was small being compared to the large sized bearing. The largest change in non-dimensional characteristics occurred when the maximum temperature of the oil film increased by 30 °C or more compared to the lubricant supply temperature. The root cause of the change in the non-dimensional characteristics is the viscous shearing in the oil film, and the thermal deformation of the structures surrounding the oil film acts in combination. These results provide insight into the Sommerfeld number, which can be used for the early stage of bearing design.


Author(s):  
Mengxuan Li ◽  
Chaohua Gu ◽  
Xiaohong Pan ◽  
Shuiying Zheng ◽  
Qiang Li

A new dynamic mesh algorithm is developed in this paper to realize the three-dimensional (3D) computational fluid dynamics (CFD) method for studying the small clearance transient flow field of tilting pad journal bearings (TPJBs). It is based on a structured grid, ensuring that the total number and the topology relationship of the grid nodes remain unchanged during the dynamic mesh updating process. The displacements of the grid nodes can be precisely recalculated at every time step. The updated mesh maintains high quality and is suitable for transient calculation of large journal displacement in FLUENT. The calculation results, such as the static equilibrium position and the dynamic characteristic coefficients, are consistent with the two-dimensional (2D) solution of the Reynolds equation. Furthermore, in the process of transient analysis, under conditions in which the journal is away from the static equilibrium position, evident differences appear between linearized and transient oil film forces, indicating that the nonlinear transient calculation is more suitable for studying the rotor-bearing system.


Lubricants ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 4 ◽  
Author(s):  
Enrico Ciulli ◽  
Paola Forte ◽  
Mirko Libraschi ◽  
Lorenzo Naldi ◽  
Matteo Nuti

2021 ◽  
pp. 1-24
Author(s):  
Gudeta Berhanu Benti ◽  
David Jose Rondon ◽  
Rolf Gustavsson ◽  
Jan-Olov Aidanpää

Abstract In this paper, the dynamics of tilting pad journal bearings with four and eight pads are studied and compared experimentally and numerically. The experiments are performed on a rigid vertical rotor supported by two identical bearings. Two sets of experiments are carried out under similar test setup. One set is performed on a rigid rotor with two four-pad bearings, while the other is on a rigid rotor with two eight-pad bearings. The dynamic properties of the two bearing types are compared with each other by studying the unbalance response of the system at different rotor speeds. Numerically, the test rig is modeled as a rigid rotor and the bearing coefficients are calculated based on Navier-Stokes equation. A nonlinear bearing model is developed and used in the steady state response simulation. The measured and simulated displacement and force orbits show similar patterns for both bearing types. Compared to the measurement, the simulated mean value and range (peak-to-peak amplitude) of the bearing force deviate with a maximum of 16 % and 38 %, respectively. It is concluded that, unlike the eight-pad TPJB, the four-pad TPJB excite the system at the third and fifth-order frequencies, which are due to the number of pads, and the amplitudes of these frequencies increase with the rotor speed.


1998 ◽  
Vol 120 (2) ◽  
pp. 405-409 ◽  
Author(s):  
P. Monmousseau ◽  
M. Fillon ◽  
J. Freˆne

Nowadays, tilting-pad journal bearings are submitted to more and more severe operating conditions. The aim of this work is to study the thermal and mechanical behavior of the bearing during the transient period from an initial steady state to a final steady state (periodic). In order to study the behavior of this kind of bearing under dynamic loading (Fdyn) due to a blade loss, a nonlinear analysis, including local thermal effects, realistic boundary conditions, and bearing solid deformations (TEHD analysis) is realized. After a comparison between theoretical results obtained with four models (ISO, ADI, THD, and TEHD) and experimental data under steady-state operating conditions (static load Ws), the evolution of the main characteristics for three different cases of the dynamic load (Fdyn/Ws < 1, Fdyn/Ws = 1 and Fdyn//Ws > 1) is discussed. The influence of the transient period on the minimum film thickness, the maximum pressure, the maximum temperature, and the shaft orbit is presented. The final steady state is obtained a long time after the appearance of a dynamic load.


Sign in / Sign up

Export Citation Format

Share Document