The Performance of a Hybrid Ceramic Ball Bearing Under High Speed Conditions with the Under-Race Lubrication Method

1997 ◽  
Vol 40 (4) ◽  
pp. 676-684 ◽  
Author(s):  
Y. Shoda ◽  
S. Ijuin ◽  
H. Aramaki ◽  
H. Yui ◽  
K. Toma
2002 ◽  
Vol 124 (3) ◽  
pp. 448-460 ◽  
Author(s):  
Hiroyuki Ohta ◽  
Shinya Satake

All-ceramic ball bearings with silicone nitride balls and silicone nitride rings were tested and the vibration characteristics were compared with those of hybrid ceramic ball bearings and conventional steel ball bearings. The vibration measurement results showed that the overall vibratory velocity levels of the all-ceramic ball bearings are influenced by rotational velocities, and do not change with axial loads. Under a given axial load and rotational velocity, the overall vibratory velocity level of the all-ceramic ball bearing is the lowest, and the hybrid ball bearing the highest. The frequencies of main peaks in the measured vibration spectra of the all-ceramic ball bearing are higher than the frequencies of the corresponding main peaks for the hybrid ceramic ball bearing and the steel ball bearing. To explain the main peaks, modal analysis was done and the relationship between peak and natural vibration was analyzed. The results of the analyses showed that the main peaks are caused by: (1) the mass-type natural vibration of the outer ring in the vertical direction, (2) the bending natural vibration of the outer ring in the radial direction, (3) the moment of inertia-type natural vibration of the outer ring in the angular direction, (4) the mass-type natural vibration of the outer ring in the axial direction, and (5) the bending natural vibration of the outer ring in the axial direction. We also discuss the generating mechanism of the vibration and present the calculation method of the vibration spectra. As a result, it is clear that the vibration spectra of the all-ceramic ball bearing are determined by the amplitude of the waviness of the raceways and ball surface, the mobility, and the non-linear spring constant associated with the contact between the raceways and balls.


2011 ◽  
Vol 175 ◽  
pp. 215-218 ◽  
Author(s):  
Cheng Wang ◽  
Wei Yu ◽  
Cheng Zu Ren

In order to predict fatigue life of hybrid ceramic ball bearing (HCBB) by Ioannides and Harris (IH) theory, the contact subsurface stress field is needed. The contact surfaces of ball and race groove are compatible. The closed-form analytical solution of compatible contact problem is hard to be obtained. The Finite Element Method (FEM) together with submodel technology is adopted to accurately and efficiently calculate the contact deformation and subsurface stress of ball–race groove contact. The result indicated that, the FEM with submodel technology considers the real contact deformation of ball-race groove, and can accurately and efficiently calculate the subsurface stress field. It is believed that the calculated subsurface stress field can be used in IH theory to predict fatigue life of HCBB.


2011 ◽  
Vol 474-476 ◽  
pp. 2064-2070
Author(s):  
Bian Guo ◽  
Yu Qiang Han ◽  
W.J. Lei ◽  
Hong Bo Wei ◽  
Fei Zhou Li

Because of its border nonlinearity, the contact between rolling element and ball race is difficult to be solved .With the development of computer technology and FEA theory, practical solution about contact is possible. This thesis which takes B7005C hybird ceramic ball bearing for example draws inner and outer contact stress and contact deformation and compares the results with Hertz solution by modeling, meshing, and setting contact pairs in ANSYS. The results show the use of ANSYS in bearing simulation is ideal, and can take a reference for the bearing simulation.


2011 ◽  
Vol 133 (2) ◽  
Author(s):  
Shuyun Jiang ◽  
Hebing Mao

The oil-air lubrication system has been widely used for rolling ball bearing. However, as the rotation speed increases, the temperature rise will increase dramatically, resulting in shortening the service life of the ball bearing. The existing literature has offered valuable fundamental data about the oil-air lubrication of rolling bearing; however, there are still some problems that concerned the oil-air lubrication, which are not addressed. In this study, an experiment setup to investigate the oil-air lubrication for the high speed ball bearing has been developed, and performance tests of hybrid ceramic and steel ball bearings under the extensive operating conditions including oil-air supply pipe length, bearing preload, lube interval, oil type, oil viscosity, nozzle design, and rotation speed have been conducted. The test results show that the bearing has the lowest temperature rise with the pipe length of 1.5 m. For the steel ball bearing, the proper preload decreases with increasing of the rotating speed, and the temperature rise of the hybrid ceramic ball bearing is not sensitive to the axial preload. There exists a proper amount of lubricant for the bearing at each rotational speed; and a larger amount of lubricant is required for the bearing as the rotating speed increases. The tested bearings under different speeds have almost the same lowest temperature rise under the lubricant with the viscosity of 100 cSt; a higher or lower viscosity will increase the bearing temperature rises. The nozzle design is an important factor to affect the temperature rise of the ball bearing, and the suitable geometric parameter of the nozzle is closely related to the cage landing method of the bearing. The temperature rise of tested bearings increases with the increase in the rotation speed; and the hybrid ceramic ball bearing always has a lower temperature rise than that of the steel ball bearing at the same operating conditions.


2020 ◽  
Vol 21 (6) ◽  
pp. 619
Author(s):  
Kostandin Gjika ◽  
Antoine Costeux ◽  
Gerry LaRue ◽  
John Wilson

Today's modern internal combustion engines are increasingly focused on downsizing, high fuel efficiency and low emissions, which requires appropriate design and technology of turbocharger bearing systems. Automotive turbochargers operate faster and with strong engine excitation; vibration management is becoming a challenge and manufacturers are increasingly focusing on the design of low vibration and high-performance balancing technology. This paper discusses the synchronous vibration management of the ball bearing cartridge turbocharger on high-speed balancer and it is a continuation of papers [1–3]. In a first step, the synchronous rotordynamics behavior is identified. A prediction code is developed to calculate the static and dynamic performance of “ball bearing cartridge-squeeze film damper”. The dynamic behavior of balls is modeled by a spring with stiffness calculated from Tedric Harris formulas and the damping is considered null. The squeeze film damper model is derived from the Osborne Reynolds equation for incompressible and synchronous fluid loading; the stiffness and damping coefficients are calculated assuming that the bearing is infinitely short, and the oil film pressure is modeled as a cavitated π film model. The stiffness and damping coefficients are integrated on a rotordynamics code and the bearing loads are calculated by converging with the bearing eccentricity ratio. In a second step, a finite element structural dynamics model is built for the system “turbocharger housing-high speed balancer fixture” and validated by experimental frequency response functions. In the last step, the rotating dynamic bearing loads on the squeeze film damper are coupled with transfer functions and the vibration on the housings is predicted. The vibration response under single and multi-plane unbalances correlates very well with test data from turbocharger unbalance masters. The prediction model allows a thorough understanding of ball bearing turbocharger vibration on a high speed balancer, thus optimizing the dynamic behavior of the “turbocharger-high speed balancer” structural system for better rotordynamics performance identification and selection of the appropriate balancing process at the development stage of the turbocharger.


Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


2019 ◽  
Vol 12 (3) ◽  
pp. 248-261
Author(s):  
Baomin Wang ◽  
Xiao Chang

Background: Angular contact ball bearing is an important component of many high-speed rotating mechanical systems. Oil-air lubrication makes it possible for angular contact ball bearing to operate at high speed. So the lubrication state of angular contact ball bearing directly affects the performance of the mechanical systems. However, as bearing rotation speed increases, the temperature rise is still the dominant limiting factor for improving the performance and service life of angular contact ball bearings. Therefore, it is very necessary to predict the temperature rise of angular contact ball bearings lubricated with oil-air. Objective: The purpose of this study is to provide an overview of temperature calculation of bearing from many studies and patents, and propose a new prediction method for temperature rise of angular contact ball bearing. Methods: Based on the artificial neural network and genetic algorithm, a new prediction methodology for bearings temperature rise was proposed which capitalizes on the notion that the temperature rise of oil-air lubricated angular contact ball bearing is generally coupling. The influence factors of temperature rise in high-speed angular contact ball bearings were analyzed through grey relational analysis, and the key influence factors are determined. Combined with Genetic Algorithm (GA), the Artificial Neural Network (ANN) model based on these key influence factors was built up, two groups of experimental data were used to train and validate the ANN model. Results: Compared with the ANN model, the ANN-GA model has shorter training time, higher accuracy and better stability, the output of ANN-GA model shows a good agreement with the experimental data, above 92% of bearing temperature rise under varying conditions can be predicted using the ANNGA model. Conclusion: A new method was proposed to predict the temperature rise of oil-air lubricated angular contact ball bearings based on the artificial neural network and genetic algorithm. The results show that the prediction model has good accuracy, stability and robustness.


1978 ◽  
Vol 21 (158) ◽  
pp. 1306-1310 ◽  
Author(s):  
Akio NAGAMATSU ◽  
Masaho FUKUDA

Sign in / Sign up

Export Citation Format

Share Document