Cyanidin-3-O-glucoside and its phenolic metabolites ameliorate intestinal diseases via modulating intestinal mucosal immune system: potential mechanisms and therapeutic strategies

Author(s):  
Zhen Cheng ◽  
Xu Si ◽  
Hui Tan ◽  
Zhihuan Zang ◽  
Jinlong Tian ◽  
...  
Cells ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 583
Author(s):  
Ze-Jun Yang ◽  
Bo-Ya Wang ◽  
Tian-Tian Wang ◽  
Fei-Fei Wang ◽  
Yue-Xin Guo ◽  
...  

Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.


2005 ◽  
Vol 93 (S1) ◽  
pp. S41-S48 ◽  
Author(s):  
Maria Luisa Forchielli ◽  
W. Allan Walker

The newborn infant leaves a germ-free intrauterine environment to enter a contaminated extrauterine world and must have adequate intestinal defences to prevent the expression of clinical gastrointestinal disease states. Although the intestinal mucosal immune system is fully developed after a full-term birth, the actual protective function of the gut requires the microbial stimulation of initial bacterial colonization. Breast milk contains prebiotic oligosaccharides, like inulin-type fructans, which are not digested in the small intestine but enter the colon as intact large carbohydrates that are then fermented by the resident bacteria to produce SCFA. The nature of this fermentation and the consequent pH of the intestinal contents dictate proliferation of specific resident bacteria. For example, breast milk-fed infants with prebiotics present in breast milk produce an increased proliferation of bifidobacteria and lactobacilli (probiotics), whereas formula-fed infants produce more enterococci and enterobacteria. Probiotics, stimulated by prebiotic fermentation, are important to the development and sustainment of intestinal defences. For example, probiotics can stimulate the synthesis and secretion of polymeric IgA, the antibody that coats and protects mucosal surfaces against harmful bacterial invasion. In addition, appropriate colonization with probiotics helps to produce a balanced T helper cell response (Th1 = Th2 = Th3/Tr1) and prevent an imbalance (Th1 > Th2 or Th2 > Th1) contributing in part to clinical disease (Th2 imbalance contributes to atopic disease and Th1 imbalance contributes to Crohn's disease andHelicobacter pylori-induced gastritis). Furthermore, a series of pattern recognition receptors, toll-like receptors on gut lymphoid and epithelial cells that interact with bacterial molecular patterns (e.g. endotoxin (lipopolysaccharide), flagellin, etc.), help modulate intestinal innate immunity and an appropriate adaptive immune response. Animal and clinical studies have shown that inulin-type fructans will stimulate an increase in probiotics (commensal bacteria) and these bacteria have been shown to modulate the development and persistence of appropriate mucosal immune responses. However, additional studies are needed to show that prebiotics can directly or indirectly stimulate intestinal host defences. If this can be demonstrated, then prebiotics can be used as a dietary supplement to stimulate a balanced and an appropriately effective mucosal immune system in newborns and infants.


1988 ◽  
Vol 12 (5) ◽  
pp. 384-387 ◽  
Author(s):  
Michael E. Lamm

2021 ◽  
Vol 22 (23) ◽  
pp. 13009
Author(s):  
Xi-Dian Tang ◽  
Tian-Tian Ji ◽  
Jia-Rui Dong ◽  
Hao Feng ◽  
Feng-Qiang Chen ◽  
...  

Cytokine storm is a phenomenon characterized by strong elevated circulating cytokines that most often occur after an overreactive immune system is activated by an acute systemic infection. A variety of cells participate in cytokine storm induction and progression, with profiles of cytokines released during cytokine storm varying from disease to disease. This review focuses on pathophysiological mechanisms underlying cytokine storm induction and progression induced by pathogenic invasive infectious diseases. Strategies for targeted treatment of various types of infection-induced cytokine storms are described from both host and pathogen perspectives. In summary, current studies indicate that cytokine storm-targeted therapies can effectively alleviate tissue damage while promoting the clearance of invading pathogens. Based on this premise, “multi-omics” immune system profiling should facilitate the development of more effective therapeutic strategies to alleviate cytokine storms caused by various diseases.


Nanomedicine ◽  
2010 ◽  
Vol 5 (10) ◽  
pp. 1617-1640 ◽  
Author(s):  
Shailja Tiwari ◽  
Govind P Agrawal ◽  
Suresh P Vyas

2007 ◽  
Vol 81 (14) ◽  
pp. 7647-7661 ◽  
Author(s):  
Anthony B. Nesburn ◽  
Ilham Bettahi ◽  
Gargi Dasgupta ◽  
Alami Aziz Chentoufi ◽  
Xiuli Zhang ◽  
...  

ABSTRACT We studied the phenotype and distribution of “naturally” occurring CD4+ CD25+ T regulatory cells (CD4+ CD25+ nTreg cells) resident in rabbit conjunctiva, the main T-cell inductive site of the ocular mucosal immune system, and we investigated their suppressive capacities using herpes simplex virus type 1 (HSV-1)-specific effector T (Teff) cells induced during ocular infection. The expression of CD4, CD25, CTLA4, GITR, and Foxp3 was examined by reverse transcription-PCR, Western blotting, and fluorescence-activated cell sorter analysis in CD45+ pan-leukocytes isolated from conjunctiva, spleen, and peripheral blood monocyte cells (PBMC) of HSV-1-infected and uninfected rabbits. Normal conjunctiva showed a higher frequency of CD4+ CD25(Bright+) T cells than did spleen and PBMC. These cells expressed high levels of Foxp3, GITR, and CTLA4 molecules. CD4+ CD25(Bright+) T cells were localized continuously along the upper and lower palpebral and bulbar conjunctiva, throughout the epithelium and substantia propria. Conjunctiva-derived CD4+ CD25(Bright+) T cells, but not CD4+ CD25(low) T cells, efficiently suppressed HSV-specific CD4+ and CD8+ Teff cells. The CD4+ CD25(Bright+) T-cell-mediated suppression was effective on both peripheral blood and conjunctiva infiltrating Teff cells and was cell-cell contact dependent but independent of interleukin-10 and transforming growth factor β. Interestingly, during an ocular herpes infection, there was a selective increase in the frequency and suppressive capacity of Foxp3+ CD4+ CD25(Bright+) T cells in conjunctiva but not in the spleen or in peripheral blood. Altogether, these results provide the first evidence that functional Foxp3+ CD4+ CD25(Bright+) Treg cells accumulate in the conjunctiva. It remains to be determined whether conjunctiva CD4+ CD25+ nTreg cells affect the topical/mucosal delivery of subunit vaccines that stimulate the ocular mucosal immune system.


Sign in / Sign up

Export Citation Format

Share Document