Studies on Erosive Wear Behavior of UHMWPE-Filled Aramid–Epoxy Hybrid Composites

2012 ◽  
Vol 27 (4) ◽  
pp. 430-435 ◽  
Author(s):  
N. Mohan ◽  
S. Natarajan ◽  
S. P. Kumaresh Babu ◽  
S. Siddaramaiah ◽  
Joong Hee Lee
Author(s):  
Ramesh Chinnakurli Suryanarayana ◽  
Ummar Khan Attaullah ◽  
Kumar Saheb ◽  
Apoorva Kumar ◽  
Manoj Kumar Rajput

Aluminium alloys are being widely used in naval applications owing to their excellent corrosion resistance and high formability characteristics. One of the most popular naval components is the tarpedo blade which makes use of forged aluminium alloy followed by anodizing surface treatment for corrosion protection. In recent years, there have been few attempts to replace the conventional aluminium alloys by their composites for the tarpedo blade applications. Literature review clearly says that CeO2 (Ceria) coating on aluminium and aluminium composites enhances their corrosion protection in aggressive marine environment. Further, there are reports suggesting that combination of CeO2 and TiO2 do yield better corrosion protection. However, there is no information on the work related to development of hybrid ceramic reinforced aluminium alloy matrices with CeO2 and TiO2 as particulate reinforcements for potential naval applications. In the light of above, the present work focuses on the development of novel Al6061-CeO2-TiO2 hybrid metal matrix composite by stir casting route followed by hot extrusion with an extrusion ratio of 8:1 at a temperature 550 °C and hot forging at 475 °C. The developed forged hybrid composites and the matrix alloy have been evaluated for microstructure, micro hardness and slurry erosion wear tests as per the ASTM Standards.


2015 ◽  
Vol 813-814 ◽  
pp. 40-45 ◽  
Author(s):  
C R Mahesha ◽  
Shivarudraiah ◽  
C. Rajesh Chandra ◽  
R. Suprabha

Materials added to the matrix help improving operating properties of a composite. In the last few years, nanofiller /polymer composite have been widely investigated because of their outstanding multifunctional properties. In order to improve the erosive wear resistance of composite, an attempt was made to use nanoTiO2 and nanoclay as filler for the basalt reinforced epoxy composite (BE). The impact velocity, filler concentration and temperature are the parameters used for the study. The composites were fabricated using vacuum assisted resin infusion technique (VARI) technique. The fabricated composite specimens were tested by using erosive wear test rig as per ASTM G76 under normal incidence. The result shows that the erosion rate increases with increase in temperature and impact velocity. However, nanoTiO2-filled BE composite exhibits lower erosion rate as compared to Nanoclay filled and unfilled composite. The morphology of eroded surfaces was examined by using scanning electron microscopy (SEM).


2017 ◽  
Vol 140 (2) ◽  
Author(s):  
Vineet Tirth

AA2218–Al2O3(TiO2) composites are synthesized by stirring 2, 5, and 7 wt % of 1:2 mixture of Al2O3:TiO2 powders in molten AA2218 alloy. T61 heat-treated composites characterized for microstructure and hardness. Dry sliding wear tests conducted on pin-on-disk setup at available loads 4.91–13.24 N, sliding speed of 1.26 m/s up to sliding distance of 3770 m. Stir cast AA2218 alloy (unreinforced, 0 wt % composite) wears quickly by adhesion, following Archard's law. Aged alloy exhibits lesser wear rate than unaged (solutionized). Mathematical relationship between wear rate and load proposed for solutionized and peak aged alloy. Volume loss in wear increases linearly with sliding distance but drops with the increase in particle wt % at a given load, attributed to the increase in hardness due to matrix reinforcement. Minimum wear rate is recorded in 5 wt % composite due to increased particles retention, lesser porosity, and uniform particle distribution. In composites, wear phenomenon is complex, combination of adhesive and abrasive wear which includes the effect of shear rate, due to sliding action in composite, and abrasive effect (three body wear) of particles. General mathematical relationship for wear rate of T61 aged composite as a function of particle wt % load is suggested. Fe content on worn surface increases with the increase in particle content and counterface temperature increases with the increase in load. Coefficient of friction decreases with particle addition but increases in 7 wt % composite due to change in microstructure.


Wear ◽  
2019 ◽  
Vol 418-419 ◽  
pp. 160-166 ◽  
Author(s):  
Konstantin S. Selivanov ◽  
Anatoly M. Smyslov ◽  
Yuri M. Dyblenko ◽  
Irina P. Semenova

2006 ◽  
Vol 128 (4) ◽  
pp. 891-894 ◽  
Author(s):  
M. Abdel Aziz ◽  
T. S. Mahmoud ◽  
Z. I. Zaki ◽  
A. M. Gaafer

In this article, the heat treatment and dry sliding wear behavior of Al-based AA6063 alloy reinforced with both TiC and Al2O3 ceramic particles were studied. The particles were synthesized by self-propagating high temperature synthesis (SHS) technique. The prepared composite alloy contains 5vol.%Al2O3 and 5vol.% TiC particles. The composite alloy was prepared by vortex method. To attain the peak hardness values of the alloys, age hardening behavior of the monolithic alloy and also the composite alloy was investigated. The wear tests were performed at room temperature using a pin-on-disk type apparatus. The results showed that the addition of TiC and Al2O3 particles increases the hardness of the AA6063 Al alloy and at the same time accelerates the aging kinetics. The sliding wear properties of AA6063 Al alloy were significantly improved by the addition of TiC and Al2O3 particles.


Author(s):  
M. Kameswara Reddy ◽  
V. Suresh Babu ◽  
K. V. Sai Srinadh

The present work studies the tribological performance of Tungsten Carbide (WC) nanoparticles reinforced epoxy polymer nanocomposites. Polymer nanocomposites are prepared by hand lay-up method. Erosive wear and hardness tests were conducted to examine the physical and wear properties of epoxy/WC nanocomposites. Addition of WC nanoparticles led to significant reduction in erosion rate. In addition to that, incorporation of WC nanoparticles enhanced the hardness of epoxy nano composites. At 2% weight of WC nano filler, nanocomposites showed better performance in erosion wear properties and also in hardness. While at 3wt% of WC filler, least performance in hardness was caused by the weak adhesive bonding between the matrix and filler. The nature of erosion wear behavior was observed. Finally worn surfaces of nanocomposites were inspected using a “scanning electron microscope (SEM)”.


Sign in / Sign up

Export Citation Format

Share Document