scholarly journals Nano-Cutting Fluid for Enhancement of Metal Cutting Performance

2012 ◽  
Vol 27 (9) ◽  
pp. 963-967 ◽  
Author(s):  
S. Khandekar ◽  
M. Ravi Sankar ◽  
V. Agnihotri ◽  
J. Ramkumar
Author(s):  
Minghua Pang ◽  
Xiaojun Liu ◽  
Kun Liu

Purpose This study aimed to clarify the influence mechanism of conical micro-grooved texture on the tool–chip friction property and cutting performance of WC-TiC/Co cemented carbide tools under flood lubrication conditions. Design/methodology/approach Conical micro-grooved texture was fabricated on the tool rake face using laser texture technology. Metal cutting tests were conducted on AISI 1045 steel with conventional and developed tools for various cutting speeds (80 m/min to 160 m/min) and conical angles of micro-grooved texture (2 ° to 5 °) under flood lubrication condition. The effect of conical micro-grooved texture on the tool cutting force, tool–chip friction coefficient, surface roughness of the machined workpiece, and wear of the tool rake face was determined. Findings Unlike the conventional tools, the conical micro-grooved tools successfully resulted in reductions in metal cutting force, tool–chip frictional coefficient, surface roughness of the machined workpiece, and wear of the tool rake face. These reductions were more noticeable than those of conventional tools with increases in the cutting speed and conical angle of the micro-grooved texture. Detailed research indicated that conical micro-grooved channel exhibits a directional motion characteristic of liquid, which accelerated the infiltration of cutting fluid at the tool–chip interface. Substantial cutting fluid was supplied and stored at the tool–chip interface for the conical micro-grooved tools. Therefore, the conical micro-grooved texture on the tool rake face showed evident advantages in improving tool–chip friction and tool cutting performance. Originality/value The main contribution of this study is proposing a new conical micro-grooved texture on the tool rake face, which improved tool–chip friction and tool cutting performance.


2021 ◽  
Author(s):  
Hui Liu ◽  
Markus Meurer ◽  
Daniel Schraknepper ◽  
Thomas Bergs

Abstract Cutting fluids are an important part of today's metal cutting processes, especially when machining aerospace alloys. They offer the possibility to extend tool life and improve cutting performance. However, the equipment and handling of cutting fluids also raises manufacturing costs. To reduce the negative impact of the high cost of cutting fluids, cooling systems and strategies are constantly being optimized. In most existing works, the influences of different cooling strategies on the relevant process parameters, such as tool wear, cutting forces, chip breakage, etc., are empirically investigated. Due to the limitations of experimental methods, analysis and modeling of the working mechanism has so far only been carried out at a relatively abstract level. For a better understanding of the mechanism of cutting fluids, a thermal coupled two-dimensional simulation approach for the orthogonal cutting process was developed in this work. This approach is based on the Coupled Eulerian Lagrangian (CEL) method and provides a detailed investigation of the cutting fluid’s impact on chip formation and tool temperature. For model validation, cutting tests were conducted on a broaching machine. The simulation resolved the fluid behavior in the cutting area and showed the distribution of convective cooling on the tool surface. This work demonstrates the potential of CEL based cutting fluid simulation, but also pointed out the shortcomings of this method.


Author(s):  
Mitsuru Hasegawa ◽  
Tatsuya Sugihara

Abstract In cutting of Ti-6Al-4V alloy, the cutting speed is limited since a high cutting temperature leads to severe tool wear and short tool life, resulting in poor production efficiency. On the other hand, some recent literature has reported that various beneficial effects can be provided by forming micro-textures on the tool surface in the metal cutting process. In this study, in order to achieve high-performance machining of Ti-6Al-4V, we first investigated the mechanism of the tool failure process for a cemented carbide cutting tool in high-speed turning of Ti-6Al-4V. Based on the results, cutting tools with micro textured surfaces were developed under the consideration of a cutting fluid action. A series of experiments showed that the textured rake face successfully decreases the cutting temperature, resulting in a significant suppression of both crater wear and flank wear. In addition, the temperature zone where the texture tool is effective in terms of the tool life in the Ti-6Al-4V cutting was discussed.


Inventions ◽  
2017 ◽  
Vol 2 (4) ◽  
pp. 29 ◽  
Author(s):  
Peter Arrabiyeh ◽  
Martin Bohley ◽  
Felix Ströer ◽  
Benjamin Kirsch ◽  
Jörg Seewig ◽  
...  

2015 ◽  
Vol 19 (2) ◽  
pp. 183-216 ◽  
Author(s):  
José Carlos Outeiro ◽  
Domenico Umbrello ◽  
Rachid M’Saoubi ◽  
I. S. Jawahir

2020 ◽  
Vol 4 (2) ◽  
pp. 45 ◽  
Author(s):  
Thomas Lakner ◽  
Marvin Hardt

The tribological effect of cutting fluids in the machining processes to reduce the friction in the cutting zone is still widely unknown. Most test benches and procedures do not represent the contact conditions of machining processes adequately, especially for interrupted contacts. This results in a lack of knowledge of the tribological behavior in machining processes. To close this knowledge gap, a novel experimental test bench to investigate the effects of cutting fluids on the frictional conditions in metal cutting under high-pressure cutting fluid supply was developed and utilized within this work. The results show that there is a difference between the frictional forces in interrupted contact compared to continuous contact. Furthermore, the cutting fluid parameters of supply pressure, volumetric flow rate, and impact point of the cutting fluid jet influence the frictional forces, the intensities of which depend on the workpiece material. In conclusion, the novel test bench allows examining the frictional behavior in interrupted cuts with an unprecedented precision, which contributes to a knowledge-based design of the cutting fluid supply for cutting tools.


2013 ◽  
Vol 392 ◽  
pp. 925-930 ◽  
Author(s):  
Ju Lie Zhang ◽  
P.N. Rao

Green manufacturing is a method in which products are produced by consuming less energy and natural resources and being safe to employees, consumers, environment and society. This paper presents an experimental study that compares the machining characteristics when a soy-based cutting fluid and petroleum-based alternate are used in turning medium and high carbon alloy steels. The result of the study will provide reference for cutting fluid management personnel to make proper decision to substitute traditional cutting fluids with the environment-friendly product.


2006 ◽  
Vol 315-316 ◽  
pp. 546-550 ◽  
Author(s):  
Hao Qiang Zhang ◽  
Xiao Ming Jia ◽  
Y. Gao ◽  
Suo Xia Hou

Cutting fluid is the essential material in metal cutting process. This paper mainly studies the influence of TEA-containing solution on cobalt leaching from cemented carbide tools and the leaching mechanism, and then identifies the effective inhibitor. The results are as follows: (1) TEA additive can make cobalt leach from cemented carbide tools. (2) Addictive of triethanolamine oleate in the solution can obviously inhibit the leaching of cobalt from cemented carbide tools and there exists the best proportion. (3) The mixture of triethanolamine oleate and borax has the best inhibition function. So it can conclude: The mixture of triethanolamine oleate and borax can obviously reduce the leaching of cobalt from the cemented carbide tools, which improves the working life of the cutter and reduces the danger of the fluid to human body.


Sign in / Sign up

Export Citation Format

Share Document