A RAPID METHOD FOR QUANTITATING THE EXTENT OF DNA DAMAGE INDUCED BY SULFUR MUSTARD IN HUMAN LYMPHOCYTES FOR DRUG SCREENING

2000 ◽  
Vol 10 (4) ◽  
pp. 251-263 ◽  
Author(s):  
Henry Louis Meier
2015 ◽  
Vol 87 (12) ◽  
pp. 1070-1078 ◽  
Author(s):  
Matus Durdik ◽  
Pavol Kosik ◽  
Jan Gursky ◽  
Lenka Vokalova ◽  
Eva Markova ◽  
...  

2002 ◽  
Vol 40 (1) ◽  
pp. 18-23 ◽  
Author(s):  
Shawna M. Jackman ◽  
Geraldine M. Grant ◽  
Christopher J. Kolanko ◽  
David A. Stenger ◽  
Joginder Nath

2002 ◽  
Vol 49 (1) ◽  
pp. 145-155 ◽  
Author(s):  
Janusz Błasiak ◽  
Ewa Gloc ◽  
Mariusz Warszawski

Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.


1995 ◽  
Vol 16 (3) ◽  
pp. 507-512 ◽  
Author(s):  
P.A.E.L. Schilderman ◽  
E. Rhijnsburger ◽  
I. Zwingmann ◽  
J.C.S. Kleinjans

2021 ◽  
Vol 161 (6-7) ◽  
pp. 352-361
Author(s):  
Qi Wang ◽  
Younghyun Lee ◽  
Monica Pujol-Canadell ◽  
Jay R. Perrier ◽  
Lubomir Smilenov ◽  
...  

Detonation of an improvised nuclear device highlights the need to understand the risk of mixed radiation exposure as prompt radiation exposure could produce significant neutron and gamma exposures. Although the neutron component may be a relatively small percentage of the total absorbed dose, the large relative biological effectiveness (RBE) can induce larger biological DNA damage and cell killing. The objective of this study was to use a hematopoietically humanized mouse model to measure chromosomal DNA damage in human lymphocytes 24 h after in vivo exposure to neutrons (0.3 Gy) and X rays (1 Gy). The human dicentric and cytokinesis-block micronucleus assays were performed to measure chromosomal aberrations in human lymphocytes in vivo from the blood and spleen, respectively. The mBAND assay based on fluorescent in situ hybridization labeling was used to detect neutron-induced chromosome 1 inversions in the blood lymphocytes of the neutron-irradiated mice. Cytogenetics endpoints, dicentrics and micronuclei showed that there was no significant difference in yields between the 2 irradiation types at the doses tested, indicating that neutron-induced chromosomal DNA damage in vivo was more biologically effective (RBE ∼3.3) compared to X rays. The mBAND assay, which is considered a specific biomarker of high-LET neutron exposure, confirmed the presence of clustered DNA damage in the neutron-irradiated mice but not in the X-irradiated mice, 24 h after exposure.


2001 ◽  
Vol 22 (4) ◽  
pp. 661-664 ◽  
Author(s):  
Z. Matijasevic ◽  
M.L. Precopio ◽  
J.E. Snyder ◽  
D.B. Ludlum

1994 ◽  
Vol 72 (11-12) ◽  
pp. 475-482 ◽  
Author(s):  
S. P. Cregan ◽  
D. R. Boreham ◽  
P. R. Walker ◽  
D. L. Brown ◽  
R. E. J. Mitchel

We have investigated the influence of the cellular adaptive response to ionizing radiation on radiation-induced apoptosis in human cells. The adaptive response is believed to be a protective mechanism that confers resistance to the detrimental effects of ionizing radiation and that can be induced by different agents, including hyperthermia and radiation. We have used fluorescence analysis of DNA unwinding (FADU) to assay the induction of apoptosis in human peripheral blood lymphocytes by ionizing radiation. Using the FADU assay, we have observed the initial radiation-induced DNA damage, its subsequent disappearance due to enzymatic repair, and its time- and dose-dependent reappearance. We believe this reappearance of DNA damage to be indicative of the DNA fragmentation event associated with apoptosis. This interpretation has been supported at the individual cell level using an in situ terminal deoxynucleotidyl transferase (TDT) assay (Apoptag, Oncor Inc.), which detects the 3′-hydroxyl ends of fragmented DNA, and by fluorescence analysis of nuclear morphology in Hoechst 33258 stained cells. Pretreatment of cells with low-dose γ-radiation (0.1 Gy) or mild hyperthermia (40 °C for 30 min) altered the extent of radiation-induced (3 Gy) apoptosis. Both pretreatments sensitized lymphocytes to become apoptotic after the 3-Gy radiation exposure. This sensitization may represent an adaptive response mechanism that reduces the risk that genetically damaged cells will proliferate. The ability to modify the probability of radiation-induced apoptosis may lower the cancer risk from a radiation exposure.Key words: apoptosis, adaptive response, ionizing radiation, hyperthermia.


Sign in / Sign up

Export Citation Format

Share Document