High Molar Mass Poly(trimethylene carbonate) by Ph2BiOEt and Ph2BiBr-Initiated Ring-Opening Polymerizations

2009 ◽  
Vol 46 (4) ◽  
pp. 353-359 ◽  
Author(s):  
Hans R. Kricheldorf ◽  
Gesa Behnken ◽  
Gert Schwarz ◽  
Peter Simon ◽  
Maren Brinkmann
2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Vitali T. Lipik ◽  
Marc J. M. Abadie

Well-defined di- and triblock copolymers consisting ofε-caprolactone (CL), L-lactide (LA), and trimethylene carbonate (TMC) were synthesized via “PLA first route” in coordinated anionic ring opening polymerization/copolymerization (CAROP) with tin (II) octoate as catalyst. The desired block structure was preserved by use of protective additiveα-methylstyrene by preventing the transesterification side-reactions. MALDI-TOF analysis revealed that the protection mechanism is associated withα-methylstyrene and tin (II) octoate complexation. Additionally, it was shown that use ofα-methylstyrene in ring opening polymerization allowed the formation of polyesters with high molar mass.


2020 ◽  
Vol 11 ◽  
pp. 204173142095431
Author(s):  
Shubham Jain ◽  
Mohammed Ahmad Yassin ◽  
Tiziana Fuoco ◽  
Hailong Liu ◽  
Samih Mohamed-Ahmed ◽  
...  

We present a solution to regenerate adipose tissue using degradable, soft, pliable 3D-printed scaffolds made of a medical-grade copolymer coated with polydopamine. The problem today is that while printing, the medical grade copolyesters degrade and the scaffolds become very stiff and brittle, being not optimal for adipose tissue defects. Herein, we have used high molar mass poly(L-lactide-co-trimethylene carbonate) (PLATMC) to engineer scaffolds using a direct extrusion-based 3D printer, the 3D Bioplotter®. Our approach was first focused on how the printing influences the polymer and scaffold’s mechanical properties, then on exploring different printing designs and, in the end, on assessing surface functionalization. Finite element analysis revealed that scaffold’s mechanical properties vary according to the gradual degradation of the polymer as a consequence of the molar mass decrease during printing. Considering this, we defined optimal printing parameters to minimize material’s degradation and printed scaffolds with different designs. We subsequently functionalized one scaffold design with polydopamine coating and conducted in vitro cell studies. Results showed that polydopamine augmented stem cell proliferation and adipogenic differentiation owing to increased surface hydrophilicity. Thus, the present research show that the medical grade PLATMC based scaffolds are a potential candidate towards the development of implantable, resorbable, medical devices for adipose tissue regeneration.


e-Polymers ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 217-226 ◽  
Author(s):  
Yinfeng Shi ◽  
Seema Agarwal

AbstractThe copolymers of 2-methylene-1,3-dioxepane (MDO) and N-phenyl maleimide (NPM) prepared by radical polymerization with high thermal stability, glass transition temperature and optical transparency are presented. The polymers made under specific reaction conditions, i.e., 120°C and high amounts of MDO, had degradable ester units, which were formed via radical ring-opening polymerization of MDO. The formation of charge-transfer complex between MDO and NPM also led to the formation of high-molar-mass copolymers by simple mixing and heating of monomers without the use of any initiator. Structural characterization of the copolymers including mechanistic studies was carried out using nuclear magnetic resonance spectroscopy, and their thermal properties were studied using differential scanning calorimetry and thermogravimetric analysis.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 466
Author(s):  
Vamshi K. Chidara ◽  
Yves Gnanou ◽  
Xiaoshuang Feng

The anionic ring-opening copolymerization (ROCOP) of epoxides, namely of ethylene oxide (EO), with anhydrides (AH) generally produces strictly alternating copolymers. With triethylborane (TEB)-assisted ROCOP of EO with AH, statistical copolymers of high molar mass including ether and ester units could be obtained. In the presence of TEB, the reactivity ratio of EO (rEO), which is normally equal to 0 in its absence, could be progressively raised to values lower than 1 or higher than 1. Conditions were even found to obtain rEO equal or close to 1. Samples of P(EO-co-ester) with minimal compositional drift could be synthesized; upon basic degradation of their ester linkages, these samples afforded poly(ethylene oxide) (PEO) diol samples of narrow molar mass distribution. In other cases where rEO were lower or higher than 1, the PEO diol samples eventually isolated after degradation exhibited a broader distribution of molar masses because of the compositional drift of initial P(EO-co-ester) samples.


2021 ◽  
Author(s):  
Ryohei Ogawa ◽  
Marc A. Hillmyer

High molar mass poly(ricinoleic acid) was synthesized via entropy-driven ring-opening metathesis polymerization of mono-, di- and mixed macrolactones of ricinoleic acid using a Grubbs second-generation catalyst and fully characterized.


2010 ◽  
Vol 25 (3) ◽  
pp. 310-318 ◽  
Author(s):  
Tero Taipale ◽  
Janne Laine ◽  
Susanna Holappa ◽  
Jonni Ahlgren ◽  
Juan Cecchini

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 628
Author(s):  
Adolfo Benedito ◽  
Eider Acarreta ◽  
Enrique Giménez

The present paper describes a greener sustainable route toward the synthesis of NIPHUs. We report a highly efficient solvent-free process to produce [4,4′-bi(1,3-dioxolane)]-2,2′-dione (BDC), involving CO2, as renewable feedstock, and bis-epoxide (1,3-butadiendiepoxide) using only metal–organic frameworks (MOFs) as catalysts and cetyltrimethyl-ammonium bromide (CTAB) as a co-catalyst. This synthetic procedure is evaluated in the context of reducing global emissions of waste CO2 and converting CO2 into useful chemical feedstocks. The reaction was carried out in a pressurized reactor at pressures of 30 bars and controlled temperatures of around 120–130 °C. This study examines how reaction parameters such as catalyst used, temperature, or reaction time can influence the molar mass, yield, or reactivity of BDC. High BDC reactivity is essential for producing high molar mass linear non-isocyanate polyhydroxyurethane (NIPHU) via melt-phase polyaddition with aliphatic diamines. The optimized Al-OH-fumarate catalyst system described in this paper exhibited a 78% GC-MS conversion for the desired cyclic carbonates, in the absence of a solvent and a 50 wt % chemically fixed CO2. The cycloaddition reaction could also be carried out in the absence of CTAB, although lower cyclic carbonate yields were observed.


2021 ◽  
pp. 2100186
Author(s):  
Annelore Aerts ◽  
Camiel Kroonen ◽  
Jan Henk Kamps ◽  
Rint P. Sijbesma ◽  
Johan P. A. Heuts

Polymer ◽  
2010 ◽  
Vol 51 (6) ◽  
pp. 1218-1221 ◽  
Author(s):  
Elise-Marie Dukuzeyezu ◽  
Hervé Lefebvre ◽  
Martine Tessier ◽  
Alain Fradet

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1438
Author(s):  
Silvio Curia ◽  
Feifei Ng ◽  
Marie-Emérentienne Cagnon ◽  
Victor Nicoulin ◽  
Adolfo Lopez-Noriega

This article presents the evaluation of diblock and triblock poly(ethylene glycol)-b-poly(1,3-trimethylene carbonate) amphiphilic copolymers (PEG-PTMCs) as excipients for the formulation of long-acting injectables (LAIs). Copolymers were successfully synthesised through bulk ring-opening polymerisation. The concomitant formation of PTMC homopolymer could not be avoided irrespective of the catalyst amount, but the by-product could easily be removed by gel chromatography. Pure PEG-PTMCs undergo faster erosion in vivo than their corresponding homopolymer. Furthermore, these copolymers show outstanding stability compared to their polyester analogues when formulated with amine-containing reactive drugs, which makes them particularly suitable as LAIs for the sustained release of drugs susceptible to acylation.


Sign in / Sign up

Export Citation Format

Share Document