The reduction of nitroblue tetrazolium by red blood cells: a measure of red cell membrane antioxidant capacity and hemoglobin-membrane binding sites

2001 ◽  
Vol 34 (6) ◽  
pp. 605-620 ◽  
Author(s):  
Afolorunso A. Demehin ◽  
Omoefe O. Abugo ◽  
Joseph M. Rifkind
1983 ◽  
Vol 244 (5) ◽  
pp. C313-C317 ◽  
Author(s):  
J. C. Parker

Recent demonstrations of chloride-associated passive potassium movements in red blood cells of humans, ducks, sheep, and toadfish prompted a reinvestigation of potassium permeability in dog red blood cells. Early observations of Davson (J. Physiol. London 101:265-283, 1942) had shown that replacement of chloride by nitrate and thiocyanate caused a greatly increased rate of potassium flux across the dog red cell membrane. This finding seemed at variance with results in other species in which chloride replacement caused a fall in potassium flux. The present data indicate that passive potassium movements in swollen dog red blood cells are chloride dependent and furosemide sensitive, as shown for the cells of other species. Davson's findings were demonstrated to be due to the inclusion of small quantities of calcium in the medium under circumstances that favored calcium entry into the cells, thus opening the calcium-activated potassium channel described by Gardos (Curr. Top. Membr. Transp. 10:217-277, 1978 and Nature London 279:248-250, 1979). Potassium movements through the latter channel were stimulated when chloride was replaced by more permeant anions, such as nitrate and thiocyanate, which also increased the rate of net potassium movements in valinomycin-treated cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Faraz A Afridi ◽  
Jennifer Van Helmond ◽  
Rafat Ahmed ◽  
Jaya Ganesh

Introduction: Hereditary Spherocytosis (HS) is the most common red cell membrane disorder. 25-30% of cases involve the SPTB gene which encodes for β-Spectrin, a protein that maintains red blood cell shape. Heterozygous variants in SPTB are associated with autosomal dominant HS and elliptocytosis. While genetic testing is not routinely done to confirm HS, it is useful in atypical presentations. Case Description: A 1 week old male presented to the pediatric hematology/oncology clinic for anemia. He was born late preterm and had a history of hyperbilirubinemia requiring phototherapy, failure to thrive, and developmental delay. On examination, he was noted to have hypotonia. There was no known family history of hematologic problems. Based on this constellation of signs and symptoms, he had a comprehensive hematologic and genetic workup. On lab evaluation, his peripheral blood smear showed normocytic normochromic red blood cells with some spherocytes, significant polychromasia, normal WBC and normal platelet morphology. His newborn screen was normal, direct coombs' negative, osmotic fragility test was positive, and protein band 3 reduction was abnormal. His abdominal ultrasound was normal. Whole exome sequencing with variant segregation analysis was significant for heterozygosity of the p.Q1034X variant of the SPTB gene. This variant in the SPTB gene has not been previously reported. Discussion: We found a novel, de novo variant in an infant with HS through whole exome sequencing. This variant is predicted to cause loss of normal protein function either through protein truncation or non-mediated mRNA decay resulting in fragile red blood cells. While neither parent was found to carry this mutation, germline mosaicism should not be excluded. Physicians should be aware that prenatal diagnosis is available to address the risk of recurrence in future pregnancies. References: 1. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis Stefan Eber-Jennifer Gonzalez-Marcia Lux-Alphonse Scarpa-William Tse-Marion Dornwell-Jutta Herbers-Wilfried Kugler-Refik Ozcan-Arnulf Pekrun-Patrick Gallagher-Werner Schroter-Bernard Forget-Samuel Lux - Nature Genetics - 1996 2. Characterization of the underlying molecular defect in hereditary spherocytosis associated with spectrin deficiency. H Hassoun-JN Vassiliadis-J Murray-PR Njolstad-JJ Rogus-SK Ballas-F Schaffer-P Jarolim-V Brabec-J Palek - Blood - 1997 3. The Complexity of Genotype-Phenotype Correlations in Hereditary Spherocytosis: A Cohort of 95 Patients Vuren-Annelies & Zwaag-Bert & Huisjes-Rick & Lak-Nathalie & Bierings-M.B. & Gerritsen-Egbert & van Beers-Eduard & Bartels-Marije & Van Wijk-Richard - HemaSphere - 2019 4. Hereditary spherocytosis with spectrin deficiency due to an unstable truncated beta spectrin. H Hassoun-JN Vassiliadis-J Murray-SJ Yi-M Hanspal-CA Johnson CA-J Palek - Blood - 1996 5. LL Peters- Semin Hematol-2018 6. Red cell membrane: past, present, and future Narla Mohandas-Patrick Gallagher - Blood - 2008 7. Spectrum of Ankyrin Mutations in Hereditary Spherocytosis: A Case Report and Review of the Literature Yeping Luo-Zhuoying Li-Lihua Huang-Jing Tian-Menglong Xiong-Zuocheng Yang - Acta Haematologica - 2018 Figure: A map of all the pathogenic mutations found on the protein structures of ankyrin-1, a-spectrin, b-spectrin and band 3. Figure Disclosures No relevant conflicts of interest to declare.


1922 ◽  
Vol 4 (4) ◽  
pp. 403-409 ◽  
Author(s):  
Calvin B. Coulter

1. The addition of blood serum displaces the optimum for agglutination of red blood cells in a salt-free medium to the reaction characteristic of flocculation of the serum euglobulin. 2. This effect is not due merely to a mechanical entanglement of the cells by the precipitating euglobulin, since at reactions at which the latter is soluble it protects the cells from the agglutination which occurs in its absence. 3. A combination of some sort appears therefore to take place between sheep cells and sheep, rabbit, and guinea pig serum euglobulin, and involves a condensation of the serum protein upon the surface of the red cell. 4. At the optimal point for agglutination of persensitized cells both mid- and end-piece of complement combine with the cells. 5. Agglutination is closely related to an optimal H ion concentration in the suspending fluid, and probably of the cell membrane, and not to a definite reaction in the interior of the cell.


1989 ◽  
Vol 203 ◽  
pp. 381-400 ◽  
Author(s):  
D. Halpern ◽  
T. W. Secomb

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.


1992 ◽  
Vol 282 (1) ◽  
pp. 75-80 ◽  
Author(s):  
E Kahana ◽  
J C Pinder ◽  
K S Smith ◽  
W B Gratzer

The intrinsic fluorescence of spectrin is strongly quenched by low concentrations of 2-bromostearate. This results from binding at a series of hydrophobic sites. Analysis of dynamic fluorescence quenching by acrylamide, iodide and caesium ions, separately and in conjunction with 2-bromostearate, leads to the conclusion that most of the tryptophan side-chains are exposed to solvent. The sites at which the fatty-acid-quenched tryptophans are located apparently interact with the lipid bilayer in the cell, as judged by quenching by bromostearate dissolved in the lipid phase. A minor proportion of the side-chains in native spectrin give rise to sharp proton magnetic resonance signals, indicative of segmental mobility; these chain elements contain some tryptophan residues, as revealed by weak downfield signals from the heterocyclic ring protons. These signals are not appreciably perturbed by stearic acid or by phosphatidylserine liposomes, suggesting that the hydrophobic binding sites are not in mobile chain elements. By contrast with a series of globular proteins which, with the exception of serum albumins, show little or no quenching by 2-bromostearate, the peripheral red cell membrane skeletal proteins ankyrin (and its spectrin-binding domain), protein 4.1 and (to a lesser extent) actin show evidence of a high affinity for the hydrophobic ligand and may, like spectrin, interact directly with the bilayer in situ.


1985 ◽  
Vol 63 (7) ◽  
pp. 804-808 ◽  
Author(s):  
Karin J. Neufeld ◽  
Cindy L. Lederman ◽  
Patrick C. Choy ◽  
Ricky Y. K. Man

The production of arrhythmias in the isolated heart by perfusion with lysophosphatidylcholine has been well documented. However, the role of the lysophospholipid as a physiological factor in the generation of cardiac arrhythmias is not clear. In this study, a pharmacological approach was used to delineate the physiological significance of lysophosphatidylcholine during this cardiac dysfunction. Lidocaine (5–20 mg/L) was found to be effective in the protection of the isolated rat heart from the lysophospholipid-induced arrhythmias at pharmacological concentrations. The effect of lidocaine in the protection of lysophospholipid-induced membrane dysfunction was studied with red blood cells. Lidocaine (2 mg/mL) protected red blood cells from hemolysis in the presence of lysophosphatidylcholine. Lidocaine did not inhibit the binding of the lysophospholipid to the red cell membrane, but inhibited hemolysis in a manner similar to cholesterol. The results are consistent with the postulate that lysophosphatidylcholine is a physiological factor in the pathogenesis of cardiac arrhythmias during myocardial ischemia.


1981 ◽  
Vol 90 (3) ◽  
pp. 711-720 ◽  
Author(s):  
B Villiger ◽  
DG Kelley ◽  
W Engleman ◽  
C Kuhn ◽  
JA McDonald

Human pulmonary alveolar macrophages synthesized and secreted several characteristic high molecular weight proteins for at least 7 d in vitro. Immunoprecipitates of medium and cell lysates from metabolically labeled cultures with specific anti-human plasma fibronectin IgG contained one major labeled polypeptide of molecular weight 440,000 (unreduced) or 220,000 (reduced). An identical polypeptide in conditioned medium from radiolabeled macrophages bound specifically to gelatin-Sepharose, demonstrating that alveolar macrophages synthesized and secreted a molecule immunologically and functionally similar to fibronectin. Fibronectin was the major newly synthesized and secreted polypeptide of freshly harvested alveolar macrophages. Pulse-chase experiments revealed that newly synthesized fibronectin was rapidly secreted into medium, approximately 50 percent appearing by 1 h and 80 percent by 8 h. Immunoperoxidase staining using antifibronectin F(ab')(2)-peroxidase conjugates revealed the majority of immunoreactive fibronectin to be intracellular, localized to endoplasmic reticulum and Golgi apparatus. No extracellular matrix fibronectin was visualized, and cell surface staining was rarely seen, usually appearing only at sites where cells were closely apposed and not at sites of macrophage-substrate attachment. Similar immunostaining of fibroblast cultures revealed cell surface-associated fibrillar fibronectin. Ultrastructural localization of fibronectin during binding and phagocytosis of gelatin-coated and plain latex particles revealed fibronectin only on gelatin-latex beads and at their cell binding sites. Neigher plain latex beads nor their cell membrane binding sites stained for fibronectin. These results demonstrate that fibronectin is a major product of human alveolar macrophages, is rapidly secreted, and is localized at cell membrane binding sites for gelatin-coated particles. In view of the known binding properties of fibronectin, it may serve as an endogenous opsonic factor promoting the binding of staphylococcus, denatured collagen, fibrin, or other macromolecules to macrophages in the lower respiratory tract.


Sign in / Sign up

Export Citation Format

Share Document