The effect of lidocaine on lysophosphatidylcholine-induced cardiac arrhythmias and cellular disturbances

1985 ◽  
Vol 63 (7) ◽  
pp. 804-808 ◽  
Author(s):  
Karin J. Neufeld ◽  
Cindy L. Lederman ◽  
Patrick C. Choy ◽  
Ricky Y. K. Man

The production of arrhythmias in the isolated heart by perfusion with lysophosphatidylcholine has been well documented. However, the role of the lysophospholipid as a physiological factor in the generation of cardiac arrhythmias is not clear. In this study, a pharmacological approach was used to delineate the physiological significance of lysophosphatidylcholine during this cardiac dysfunction. Lidocaine (5–20 mg/L) was found to be effective in the protection of the isolated rat heart from the lysophospholipid-induced arrhythmias at pharmacological concentrations. The effect of lidocaine in the protection of lysophospholipid-induced membrane dysfunction was studied with red blood cells. Lidocaine (2 mg/mL) protected red blood cells from hemolysis in the presence of lysophosphatidylcholine. Lidocaine did not inhibit the binding of the lysophospholipid to the red cell membrane, but inhibited hemolysis in a manner similar to cholesterol. The results are consistent with the postulate that lysophosphatidylcholine is a physiological factor in the pathogenesis of cardiac arrhythmias during myocardial ischemia.

1978 ◽  
Vol 45 (1) ◽  
pp. 7-10 ◽  
Author(s):  
H. Bard ◽  
J. C. Fouron ◽  
J. E. Robillard ◽  
A. Cornet ◽  
M. A. Soukini

Studies were carried out during fetal life in sheep to determine the relationship of 2,3-diphosphoglycerate (DPG), the intracellular red cell and extracellular pH, and the switchover to adult hemoglobin synthesis in regulating the position of the fetal red cell oxygen-affinity curve in utero. Adult hemoglobin first appeared near 120 days of gestation. The mean oxygen tension at which hemoglobin is half saturated (P50) prior to 120 days of gestation remained constant at 13.9 +/- 0.3 (SD) Torr and then increased gradually as gestation continued, reaching 19 Torr at term. During the interval of fetal life studied, the level of DPG was 4.43 +/- 1.63 (SD) micromol/g Hb and the deltapH between plasma and red blood cells was 0.227 +/- 0.038 (SD); neither was affected by gestational age. The decrease in the red cell oxygen affinity after 120 days of gestation ocrrelated with the amount of adult hemoglobin present in the fetus (r = 0.78; P less than 0.001). This decrease can be attributed only to the amount of the adult-type hemoglobin present, and not to DPG, or to changes in the deltapH between plasma and red blood cells, because both remained stable during the last trimester.


1989 ◽  
Vol 203 ◽  
pp. 381-400 ◽  
Author(s):  
D. Halpern ◽  
T. W. Secomb

An analysis is presented of the mechanics of red blood cells flowing in very narrow tubes. Mammalian red cells are highly flexible, but their deformations satisfy two significant constraints. They must deform at constant volume, because the contents of the cell are incompressible, and also at nearly constant surface area, because the red cell membrane strongly resists dilation. Consequently, there exists a minimal tube diameter below which passage of intact cells is not possible. A cell in a tube with this diameter has its critical shape: a cylinder with hemispherical ends. Here, flow of red cells in tubes with near-minimal diameters is analysed using lubrication theory. When the tube diameter is slightly larger than the minimal value, the cell shape is close to its shape in the critical case. However, the rear end of the cell becomes flattened and then concave with a relatively small further increase in the diameter. The changes in cell shape and the resulting rheological parameters are analysed using matched asymptotic expansions for the high-velocity limit and using numerical solutions. Predictions of rheological parameters are also obtained using the assumption that the cell is effectively rigid with its critical shape, yielding very similar results. A rapid decrease in the apparent viscosity of red cell suspensions with increasing tube diameter is predicted over the range of diameters considered. The red cell velocity is found to exceed the mean bulk velocity by an amount that increases with increasing tube diameter.


1983 ◽  
Vol 244 (5) ◽  
pp. C313-C317 ◽  
Author(s):  
J. C. Parker

Recent demonstrations of chloride-associated passive potassium movements in red blood cells of humans, ducks, sheep, and toadfish prompted a reinvestigation of potassium permeability in dog red blood cells. Early observations of Davson (J. Physiol. London 101:265-283, 1942) had shown that replacement of chloride by nitrate and thiocyanate caused a greatly increased rate of potassium flux across the dog red cell membrane. This finding seemed at variance with results in other species in which chloride replacement caused a fall in potassium flux. The present data indicate that passive potassium movements in swollen dog red blood cells are chloride dependent and furosemide sensitive, as shown for the cells of other species. Davson's findings were demonstrated to be due to the inclusion of small quantities of calcium in the medium under circumstances that favored calcium entry into the cells, thus opening the calcium-activated potassium channel described by Gardos (Curr. Top. Membr. Transp. 10:217-277, 1978 and Nature London 279:248-250, 1979). Potassium movements through the latter channel were stimulated when chloride was replaced by more permeant anions, such as nitrate and thiocyanate, which also increased the rate of net potassium movements in valinomycin-treated cells.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 9-10
Author(s):  
Faraz A Afridi ◽  
Jennifer Van Helmond ◽  
Rafat Ahmed ◽  
Jaya Ganesh

Introduction: Hereditary Spherocytosis (HS) is the most common red cell membrane disorder. 25-30% of cases involve the SPTB gene which encodes for β-Spectrin, a protein that maintains red blood cell shape. Heterozygous variants in SPTB are associated with autosomal dominant HS and elliptocytosis. While genetic testing is not routinely done to confirm HS, it is useful in atypical presentations. Case Description: A 1 week old male presented to the pediatric hematology/oncology clinic for anemia. He was born late preterm and had a history of hyperbilirubinemia requiring phototherapy, failure to thrive, and developmental delay. On examination, he was noted to have hypotonia. There was no known family history of hematologic problems. Based on this constellation of signs and symptoms, he had a comprehensive hematologic and genetic workup. On lab evaluation, his peripheral blood smear showed normocytic normochromic red blood cells with some spherocytes, significant polychromasia, normal WBC and normal platelet morphology. His newborn screen was normal, direct coombs' negative, osmotic fragility test was positive, and protein band 3 reduction was abnormal. His abdominal ultrasound was normal. Whole exome sequencing with variant segregation analysis was significant for heterozygosity of the p.Q1034X variant of the SPTB gene. This variant in the SPTB gene has not been previously reported. Discussion: We found a novel, de novo variant in an infant with HS through whole exome sequencing. This variant is predicted to cause loss of normal protein function either through protein truncation or non-mediated mRNA decay resulting in fragile red blood cells. While neither parent was found to carry this mutation, germline mosaicism should not be excluded. Physicians should be aware that prenatal diagnosis is available to address the risk of recurrence in future pregnancies. References: 1. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis Stefan Eber-Jennifer Gonzalez-Marcia Lux-Alphonse Scarpa-William Tse-Marion Dornwell-Jutta Herbers-Wilfried Kugler-Refik Ozcan-Arnulf Pekrun-Patrick Gallagher-Werner Schroter-Bernard Forget-Samuel Lux - Nature Genetics - 1996 2. Characterization of the underlying molecular defect in hereditary spherocytosis associated with spectrin deficiency. H Hassoun-JN Vassiliadis-J Murray-PR Njolstad-JJ Rogus-SK Ballas-F Schaffer-P Jarolim-V Brabec-J Palek - Blood - 1997 3. The Complexity of Genotype-Phenotype Correlations in Hereditary Spherocytosis: A Cohort of 95 Patients Vuren-Annelies & Zwaag-Bert & Huisjes-Rick & Lak-Nathalie & Bierings-M.B. & Gerritsen-Egbert & van Beers-Eduard & Bartels-Marije & Van Wijk-Richard - HemaSphere - 2019 4. Hereditary spherocytosis with spectrin deficiency due to an unstable truncated beta spectrin. H Hassoun-JN Vassiliadis-J Murray-SJ Yi-M Hanspal-CA Johnson CA-J Palek - Blood - 1996 5. LL Peters- Semin Hematol-2018 6. Red cell membrane: past, present, and future Narla Mohandas-Patrick Gallagher - Blood - 2008 7. Spectrum of Ankyrin Mutations in Hereditary Spherocytosis: A Case Report and Review of the Literature Yeping Luo-Zhuoying Li-Lihua Huang-Jing Tian-Menglong Xiong-Zuocheng Yang - Acta Haematologica - 2018 Figure: A map of all the pathogenic mutations found on the protein structures of ankyrin-1, a-spectrin, b-spectrin and band 3. Figure Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2011 ◽  
Vol 118 (21) ◽  
pp. 1312-1312
Author(s):  
Grant C. Bullock ◽  
Lorrie L. Delehanty ◽  
Anne-Laure A Talbot ◽  
Chante Richardson ◽  
Adam Goldfarb

Abstract Abstract 1312 Anemia affects the quality of life and the life expectancy of millions of people in the U.S. Many patients are either intolerant or unresponsive to available treatments, so alternative strategies are needed. Red blood cell production requires the action of erythropoietin (Epo) on red blood cell precursors in the bone marrow. Iron restriction results in loss of Epo-responsiveness and anemia, despite increased serum Epo levels. Iron infusion restores Epo-responsiveness suggesting that iron dominantly regulates Epo-receptor (EpoR) signaling. Understanding how iron restriction regulates EpoR signaling pathways has major clinical significance. Agonists could offer an iron-free approach that enhances the response to Epo in anemia due to iron deficiency or chronic diseases. In addition, antagonists could be used to treat polycythemia vera or other myeloproliferative disorders. We have discovered that the aconitases, multifunctional iron-sulfur cluster proteins that convert citrate into isocitrate are key in connecting iron to Epo-signaling in early erythroid progenitors (GC Bullock, et. al. Blood 2010;116:97). We also discovered that isocitrate, the downstream product of aconitase, can enhance the effectiveness of Epo during iron deficiency in vitro and in vivo in mice with IDA. These observations suggest that isocitrate or derivatives of isocitrate that synergize with erythropoiesis stimulating agents (ESAs) have important therapeutic application in the treatment of anemia. Deletion of EpoR in mice is incompatible with life, however mice and humans that express truncated EpoR show increased production of red blood cells. These observations suggest that the distal cytoplasmic domain of the EpoR inhibits production of red cells and may play a critical role in iron deficiency anemia. EpoR mutant mice lacking the distal half of the cytoplasmic domain of the EpoR (EpoR-H mice) and mice with the same EpoR truncation mutation plus an additional mutation of tyrosine 343 (EpoR-HM mice) show near normal levels of steady state erythropoiesis. To determine the role of the distal domain in erythroid suppression during iron deficiency, EpoR-H, EpoR-HM and EpoR-wildtype mice were fed a low iron diet and compared by weekly CBCs and flow cytometry. EpoR-H mutant mice continue to efficiently produce red blood cells during iron deficiency. And this occurs despite a decrease in hemoglobin. EpoR-HM mice produce fewer rbcs than EpoR-H mice, however rbc production by EpoR-HM mice resists the suppressive effects of iron restriction. Similar experiments also suggest that the distal EpoR is necessary for the isocitrate-mediated enhancement of Epo-driven erythropoiesis. In addition to aconitase/isocitrate and the distal EpoR other candidate key signaling components of this Epo-dependent, iron-responsive pathway have been identified in our recent preliminary experiments. These components include specific protein kinase C (PKC) isozymes, AKT1 and ERK1/2. These findings support a new model of iron sensing by aconitase/isocitrate that alters EpoR signaling to decrease red blood cell production and conserve iron when supplies are low. This model fits better than older “heme-deficiency” models because disorders in heme synthesis block red cell differentiation at a later stage. This model also has potential to explain changes seen in other tissues during chronic iron deficiency. Nutritional iron restriction may have unmasked a new role for the distal EpoR in red cell development and implicated new iron-responsive Epo signaling pathways that can be used to develop new therapeutic agonists and antagonists of Epo. Disclosures: No relevant conflicts of interest to declare.


2005 ◽  
Vol 85 (1) ◽  
pp. 179-200 ◽  
Author(s):  
Virgilio L. Lew ◽  
Robert M. Bookchin

Polymers of deoxyhemoglobin S deform sickle cell anemia red blood cells into sickle shapes, leading to the formation of dense, dehydrated red blood cells with a markedly shortened life-span. Nearly four decades of intense research in many laboratories has led to a mechanistic understanding of the complex events leading from sickling-induced permeabilization of the red cell membrane to small cations, to the generation of the heterogeneity of age and hydration condition of circulating sickle cells. This review follows chronologically the major experimental findings and the evolution of guiding ideas for research in this field. Predictions derived from mathematical models of red cell and reticulocyte homeostasis led to the formulation of an alternative to prevailing gradualist views: a multitrack dehydration model based on interactive influences between the red cell anion exchanger and two K+transporters, the Gardos channel (hSK4, hIK1) and the K-Cl cotransporter (KCC), with differential effects dependent on red cell age and variability of KCC expression among reticulocytes. The experimental tests of the model predictions and the amply supportive results are discussed. The review concludes with a brief survey of the therapeutic strategies aimed at preventing sickle cell dehydration and with an analysis of the main open questions in the field.


2020 ◽  
Vol 12 (04) ◽  
pp. 244-249
Author(s):  
Ibrahim Mustafa ◽  
Tameem Ali Qaid Hadwan

Abstract Introduction Maintaining blood supply is a challenge in blood banks. Red blood cells (RBCs) stored at 4°C experience issues of biochemical changes due to metabolism of cells, leading to changes collectively referred to as “storage lesions.” Oxidation of the red cell membrane, leading to lysis, contributes to these storage lesions. Methods Blood bags with CPD-SAGM stored at 4°C for 28 days were withdrawn aseptically on days 1, 14, and 28. Hematology analyzer was used to investigate RBC indices. Hemoglobin oxidation was studied through spectrophotometric scan of spectral change. RBC lysis was studied with the help of Drabkin's assay, and morphological changes were observed by light and scan electron microscopy. Results RBCs show progressive changes in morphology echinocytes and spherocytes on day 28. There was 0.85% RBC lysis, an approximately 20% decrease in percentage oxyhemoglobin, and a 14% increase in methemoglobin formation, which shows hemoglobin oxidation on day 28. Conclusions Oxidative damage to RBC, with an increase in storage time was observed in the present study. The observed morphological changes to RBC during the course of increased time shows that there is progressive damage to RBC membrane and a decrease in hemoglobin concentration; percentage RBC lysis is probably due to free hemoglobin and iron.


Sign in / Sign up

Export Citation Format

Share Document