Determination of Degradation Products Occurring in Acidic Solutions of a 21-Aminosteroid (Tirilazad) Using a Gradient Hplc Method

1995 ◽  
Vol 18 (16) ◽  
pp. 3269-3282 ◽  
Author(s):  
S. L. Hoerle ◽  
B. G. Snider
2006 ◽  
Vol 89 (6) ◽  
pp. 1552-1556
Author(s):  
ArmaĞan Önal ◽  
Olcay SaĞiri ◽  
S Müge Çetin ◽  
Sidika Toker

Abstract Reboxetine is used as a selective noradrenaline reuptake inhibitor for the treatment of major depressive disorders. It is effective in the treatment of severe depression and safer to use than traditional tricyclic antidepressants. In this study, a novel, simple, and rapid stability-indicating high-performance liquid chromatography (HPLC) method for reboxetine methansulfonate was successfully developed and validated for the assay of tablets. The method was used to quantify reboxetine in tablets; it employed a C18 column (150 4.6 mm id) with an isocratic mobile phase consisting of methanolphosphate buffer (pH 7, 0.02 M; 55 + 45, v/v) at a flow rate of 1.0 μmL/min. Reboxetine was detected by an ultraviolet detector at 277 nm. The retention time of reboxetine was about 4.5 min. The developed HPLC method was validated with respect to linearity, precision, sensitivity, accuracy, and selectivity. The method was linear over the concentration range 150 g/mL (r 0.9999). The limits of detection and the quantitation of reboxetine were 0.1 and 0.3 μg/mL, respectively. The relative standard deviation values for intraday and interday precision were 0.781.01 and 1.081.37%, respectively. Selectivity was validated by subjecting a stock solution of reboxetine to neutral, acid, and alkali hydrolysis, as well as oxidation, dry heat treatment, and photodegradation. The peaks of the degradation products did not interfere with the peak of reboxetine. The results indicated that the proposed method could be used in a stability assay. The proposed method was successfully applied to the determination of reboxetine in tablets. Excipients present in the tablets did not interfere with the analysis.


2016 ◽  
Vol 8 (30) ◽  
pp. 5949-5956 ◽  
Author(s):  
Soumia Boulahlib ◽  
Ali Boudina ◽  
Kahina Si-Ahmed ◽  
Yassine Bessekhouad ◽  
Mohamed Trari

In this study, a rapid and simple method based on reversed-phase high performance liquid chromatography (RP-HPLC) using a photodiode array detector (PDA) for the simultaneous analysis of five pollutants including aniline and its degradation products, para-aminophenol, meta-aminophenol, ortho-aminophenol and phenol, was developed.


Author(s):  
V.L.N. Balaji Gupta Tiruveedhi ◽  
Venkateswara Rao Battula ◽  
Kishore Babu Bonige ◽  
Tejeswarudu B.

This research work was designed to establish and validate a novel stability indicating RP-HPLC method for the combined determination of Benidipine hydrochloride (BHE) and Nebivolol hydrochloride (NHE) in bulk and tablets, dependent on ICH guidelines.The assay method to analyse BHE and NHE was optimized with isocratic elution using acetonitrile: 0.1M acetate buffer (45:55, pH 5.1), Lichrospher ODS RP-18 column and flow pace of 1 ml/min. Total time for single run was 14 min. The injection quantity was 20μl, and was detected at 249nm. The method was verified on a concentration series of 1.25-10μg/ml (NHE) and 1.0-10μg/ml (BHE) for precision, accuracy and linearity. The LOD values were 0.059µg/ml and 0.028µg/ml for NHE and BHE, respectively. The LOQ values were 0.196µg/ml for NHE and 0.094µg/ml for BHE. The recovery percentages were 98.60-100.11% (BHE) and 98.94-101.50% (NHE) with relative standard deviation 0.250-0.694% (BHE) and 0.183-0.400% (NHE). The method was also observed to be efficient, and was sufficiently specific to measure BHE and NHE in the presence of stress-produced degradation products.


Author(s):  
Birva A. Athavia ◽  
Zarna R. Dedania ◽  
Ronak R. Dedania ◽  
S. M. Vijayendra Swamy ◽  
Chetana B. Prajapati

Objective: The aim and objective of this study was to develop and validate Stability Indicating HPLC method for determination of Vilazodone Hydrochloride.Methods: The method was carried out on a Phenomenex, C18 (250x4.6 mm, 5 µm) Column using a mixture of Acetonitrile: Water (50:50v/v), pH adjusted to 3.3 with Glacial Acetic Acid for separation. The flow rate was adjusted at 1 ml/min and Detection was carried out at 240 nm.Results: The retention time of vilazodone hydrochloride was found to be 2.3 min. The calibration curve was found to be linear in the range 25-75µg/ml with a correlation coefficient (R2=0.996). The limit of detection and limit of quantitation were found to be 4.78µg/ml and 14.48µg/ml respectively. The % recovery of vilazodone hydrochloride was found to be in the range of 98.21±0.08 % to 99.07±0.64%. The proposed method was successfully applied for the estimation of vilazodone hydrochloride in marketed tablet formulation.Vilazodone Hydrochloride was subjected to forced degradation under Acidic, Alkaline, Oxidation, Dry Heat and Photolytic degradation conditions. Vilazodone hydrochloride showed 3.12% degradation under acidic condition, 4.78% under alkaline condition, 7.8% under oxidation condition, 3.53% under dry heat condition and 4.9% under photolytic condition.Acid degradation impurity was identified and characterised by LC-MS/MS was found to be 1-(4-Penten-1-yl) piperazine having molecular weight 154.253 (m/z 155.08) and Molecular Formula C9H18N2.Conclusion: A simple, precise, rapid and accurate Stability Indicating HPLC method has been developed and validated for the determination of Vilazodone Hydrochloride in presence of its degradation products as per the ICH Guidelines. 


2021 ◽  
Vol 10 (1) ◽  
pp. 20-28
Author(s):  
Ivana Savić-Gajić ◽  
Ivan Savić ◽  
Predrag Sibinović ◽  
Valentina Marinković

In this study, the modified stability-indicating RP-HPLC method was validated for quantitative analysis of amlodipine besylate in the presence of its impurity D (3-ethyl 5-methyl 2-[(2-aminoethoxy)methyl]-4-(2-chlorophenyl)-6-methylpyridine-3,5-dicarboxylate). The method was applied for the determination of an analyte in the tablets and irradiated samples packed in the primary packaging (Alu/PVC/PVDC blister packaging). The efficient chromatographic separation was achieved using a ZORBAX Eclipse XDB-C18 column (4.6×250 mm, 5 mm) with isocratic elution of mobile phase which consisted of acetonitrile:methanol:triethylamine solution (15:35:50, v/v/v) (pH 3.0). The flow rate of the mobile phase was 1 mL min-1, while the detection of amlodipine besylate was carried out at 273 nm. Amlodipine besylate and its impurity D were identified at the retention times of 16.529 min and 2.575 min, respectively. The linearity of the method with the coefficient of determination of 0.999 was confirmed in the concentration range of 10 - 75 µg mL-1 for amlodipine besylate. The limit of detection was 0.2 µg mL-1, while the limit of quantification was 0.66 µg mL-1. After UV and Vis radiation of the tablets packed in the primary packaging, the content of amlodipine besylate was reduced by 22.38% and 19.89%, respectively. The presence of new degradation products was not detected under the given chromatographic conditions. The photodegradation of amlodipine besylate followed pseudo-first-order kinetics. Based on the half-life of amlodipine besylate (38.4 days for UV radiation and 43.3 days for Vis radiation), it was concluded that amlodipine besylate in the tablets has satisfactory photostability after its packing in the Alu/PVC/PVDC blister packaging.


1996 ◽  
Vol 42 (5) ◽  
pp. 756-760 ◽  
Author(s):  
L Kuracka ◽  
T Kalnovicová ◽  
B Líska ◽  
P Turcáni

Abstract We describe a convenient method for the separation and quantification of xanthine, hypoxanthine, and uric acid in 20 microL of cerebrospinal fluid (CSF) with use of HPLC and ultraviolet detection. The analysis is performed on a Sepharon SGX C18 column and the elution system consists of potassium phosphate buffer, pH 5.1, with 20 mL/L methanol. The lower limit of detection was 4 pmol for hypoxanthine and xanthine and 6 pmol for uric acid. Analytical recoveries of purine metabolites ranged from 98.6% to 102.9%. The intra- and interassay CVs were <3%. The applicability of the method is illustrated with the determination of micromolar concentrations of xanthine, hypoxanthine, and uric acid in CSF samples obtained from 113 patients with various neurological disorders.


2016 ◽  
Vol 9 (1) ◽  
pp. 54
Author(s):  
Megha Sharma ◽  
Neeraj Mahindroo

Objective: The objective of the present study was to develop and validate a novel stability indicating reverse phase-high performance liquid chromatography (RP-HPLC) method for determination of β-acetyldigoxin, an active pharmaceutical ingredient (API).Methods: The chromatographic separation was carried out on Agilent Technologies 1200 series HPLC system equipped with photo diode array detector and C-18 (4.6x250 mm, 5 µ) column. The mobile phase consisted of water: acetonitrile (65:35 v/v), delivered at a flow rate of 1.5 ml/min and eluents were monitored at 225 nm.Results: The retention time of β-acetyldigoxin was 9.2 min. The method was found to be linear (R2= 0.9995) in the range of 31.25-500 µg/ml. The accuracy studies showed the mean percent recovery of 101.02%. LOD and LOQ were observed to be 0.289 µg/ml and 0.965 µg/ml, respectively. The method was found to be robust and system suitability testing was also performed. Forced degradation analysis was carried out under acidic, alkaline, oxidative and photolytic stress conditions. Significant degradation was observed under tested conditions, except for oxidative condition. The method was able to separate all the degradation products within runtime of 20 min and was able to determine β-acetyldigoxin unequivocally in presence of degradation products.Conclusion: The novel, economic, rapid and simple method for analysis of β-acetyldigoxin is reported. The developed method is suitable for routine quality control and its determination as API, and in pharmaceutical formulations and stability study samples.


2019 ◽  
Vol 58 (3) ◽  
pp. 251-261
Author(s):  
Hala E Zaazaa ◽  
Rasha Abdel-Ghany ◽  
M Abdelkawy ◽  
Mahmoud Sayed

Abstract Two robust and selective stability-indicating chromatographic methods were developed and validated for the determination of metolazone in drug substance and pharmaceutical dosage form in the presence of its degradation products. The HPLC method employed a Kromasil C18 (250 × 4.6,5 μm) column and a mobile phase of acetonitrile: 0.2% orthophosphoric acid (32:68 v/v) at a flow rate 2 mL/min and detection at 238 nm. The separation was performed in HPLC isocratic mode. The robustness of the suggested method was assessed using the Plackett–Burman design, parameters affecting system suitability were established and non-significant intervals for the significant parameters were considered. The HPTLC method employed Nano-SIL-20 UV254 HPTLC plates as adsorbent, ethyl acetate: toluene: acetic acid solution (4:4:0.5, v/v/v), as a developing solvent system and densitometric detection at 238 nm. Metolazone was exposed to different stress conditions, including acid and alkaline hydrolysis and oxidative and photolytic degradation. The main degradation products obtained have been characterized and interpreted based on LC-MS. The linearity of the suggested methods was proved in the concentration range of 20–75 μg/mL for the HPLC method and 100–900 ng/spot for the HPTLC method. The suggested methods were validated according to international conference on harmonization guidelines. These methods were successfully dedicated for the estimation of metolazone in drug substance and pharmaceutical dosage form in the presence of its degradation products. The results of the suggested methods were evaluated and compared statistically with results obtained by an official method without finding any significant difference.


Sign in / Sign up

Export Citation Format

Share Document