A gun drill mechanics model analysis based on 15-5PH solid solution stainless steel

2018 ◽  
Vol 23 (2) ◽  
pp. 218-231 ◽  
Author(s):  
Liang Li ◽  
Ning He ◽  
Peng Wu ◽  
Yinfei Yang ◽  
Xiuqing Hao

Author(s):  
L.E. Murr ◽  
J.S. Dunning ◽  
S. Shankar

Aluminum additions to conventional 18Cr-8Ni austenitic stainless steel compositions impart excellent resistance to high sulfur environments. However, problems are typically encountered with aluminum additions above about 1% due to embrittlement caused by aluminum in solid solution and the precipitation of NiAl. Consequently, little use has been made of aluminum alloy additions to stainless steels for use in sulfur or H2S environments in the chemical industry, energy conversion or generation, and mineral processing, for example.A research program at the Albany Research Center has concentrated on the development of a wrought alloy composition with as low a chromium content as possible, with the idea of developing a low-chromium substitute for 310 stainless steel (25Cr-20Ni) which is often used in high-sulfur environments. On the basis of workability and microstructural studies involving optical metallography on 100g button ingots soaked at 700°C and air-cooled, a low-alloy composition Fe-12Cr-5Ni-4Al (in wt %) was selected for scale up and property evaluation.



2000 ◽  
Vol 123 (1) ◽  
pp. 130-134
Author(s):  
Makoto Hayashi ◽  
Kunio Enomoto

Changes in the residual stress in a worked surface layer of type 304 austenitic stainless steel due to tensile deformation were measured by the X-ray diffraction residual stress measuring method. The compressive residual stresses introduced by end-mill, end-mill side cutter, and grinder were easily changed into tensile stresses when the plate specimens were subjected to tensile stress greater than the yield stress of the solid solution heat-treated material. The residual stresses after the tensile deformation depend on the initial residual stresses and the degree of preliminary working. The behavior of the residual stress changes can be interpreted if the surface-worked material is regarded as a composite made of solid solution heat-treated material and work-hardened material.



2011 ◽  
Vol 335-336 ◽  
pp. 566-570
Author(s):  
Hong Pu Zhao ◽  
Shun Xing Wang

Effect of solid solution treatment on corrosive behavior of 00Cr26Ni5Mo2Cu3Re Duplex Stainless Steel in static stage of HNO3+HF acid solution is studied in the paper.The results show that the corrosion between phases and pitting corrosion on ferrite are serious at low temperature ,the phenomenon gradually disappear with the solid solution temperature rising ; the corrosive resistance of 00Cr26Ni5Mo2Cu3Re is getting better first and then decrease with solution temperature at high temperature, the best corrosive resistance temperature is at 1050°C.



Author(s):  
Juan Wang ◽  
Jiteng Wang ◽  
Yajiang Li ◽  
Deshuang Zheng

AbstractThe brazing of Mo-Cu composite and 304 stainless steel was carried out in vacuum with Ni-Cr-P filler metal at 980 °C for 20 min. Microstructure in Mo-Cu/304 stainless steel joint was investigated by field-emission scanning electron microscope (FE-SEM) with energy dispersive spectrometer (EDS) and shear strength was measured by shearing test. The results indicate that shear strength of the Mo-Cu/304 stainless steel joint is about 155 MPa. There forms eutectic structure of γ-Ni solid solution with Ni



2019 ◽  
Vol 34 (01n03) ◽  
pp. 2040061 ◽  
Author(s):  
Kai Qi ◽  
Guangjin Wang ◽  
Yunxue Jin ◽  
Jiayang Gu ◽  
Zhongyu Zhang ◽  
...  

Duplex stainless steel, consisting of ferrite and austenite, has good corrosion resistance and is often used in harsh marine environments. In this paper, welding on SAF2507 duplex stainless steel with 5 mm thickness was finished by laser beam welding (LBW) and gas tungsten arc welding (GTAW). The post-weld solid solution treatment was also conducted at temperature of [Formula: see text]C followed with cooling by water after 1 h. The results showed that both LBW and GTAW could produce well-produced welds. The microstructures of the welds were composed of ferrite and austenite phases. After solid solution treatment at [Formula: see text]C, the two-phase structure of LBW joint became uniform, while [Formula: see text] phase was produced in GTAW joint. The impact test of welded joints at room-temperature was carried out. After solid solution treatment at [Formula: see text]C, the impact toughness of LBW joints obviously increased, but the impact toughness of GTAW joint decreased with the fracture morphology of brittle mode. The electrochemical experiments on the welded joints showed that the pitting corrosion resistance of LBW joints improved after solid solution treatment, while the pitting corrosion resistance of GTAW joints decreased.



Sign in / Sign up

Export Citation Format

Share Document