Abstracts

2008 ◽  
Vol 27 (6) ◽  
pp. 405-405
Author(s):  
David J. Dix

The U.S. Environmental Protection Agency (EPA), National Toxicology Program (NTP), and National Institutes of Health (NIH) Chemical Genomics Center (NCGC) have complementary research programs designed to improve chemical toxicity evaluations by developing high throughput screening (HTS) methods that evaluate the impact of environmental chemicals on key toxicity pathways. These federal partners are coordinating an extension of the EPA’s ToxCast program, the NTP’s HTS initiative, and the NCGC’s Molecular Libraries Initiative into a collaborative research program focused on identifying toxicity pathways and developing in vitro assays to characterize the ability of chemicals to perturb those pathways. The goal is to develop new paradigm for high throughput toxicity testing that collects mechanistic and quantitative data from in vitro assays measuring chemical modulation of biological processes involved in the progression to toxicity. As toxicity pathways are identified, the in vitro assays can be optimized for comparison to in vivo animal studies, and for predicting effects in humans. Subsequent computational modeling of toxicity pathway responses and appropriate chemical dosimetry will need to be developed to make these predictions relevant for human health risk assessment. This work was reviewed by EPA and approved for publication but does not necessarily reflect official Agency policy. Index Terms: Toxicogenomics, High Throughput Screening/Testing, EPA ToxCast, Chemical Risk Assessment

Author(s):  
Olga V. Naidenko ◽  
David Q. Andrews ◽  
Alexis M. Temkin ◽  
Tasha Stoiber ◽  
Uloma Igara Uche ◽  
...  

The development of high-throughput screening methodologies may decrease the need for laboratory animals for toxicity testing. Here, we investigate the potential of assessing immunotoxicity with high-throughput screening data from the U.S. Environmental Protection Agency ToxCast program. As case studies, we analyzed the most common chemicals added to food as well as per- and polyfluoroalkyl substances (PFAS) shown to migrate to food from packaging materials or processing equipment. The antioxidant preservative tert-butylhydroquinone (TBHQ) showed activity both in ToxCast assays and in classical immunological assays, suggesting that it may affect the immune response in people. From the PFAS group, we identified eight substances that can migrate from food contact materials and have ToxCast data. In epidemiological and toxicological studies, PFAS suppress the immune system and decrease the response to vaccination. However, most PFAS show weak or no activity in immune-related ToxCast assays. This lack of concordance between toxicological and high-throughput data for common PFAS indicates the current limitations of in vitro screening for analyzing immunotoxicity. High-throughput in vitro assays show promise for providing mechanistic data relevant for immune risk assessment. In contrast, the lack of immune-specific activity in the existing high-throughput assays cannot validate the safety of a chemical for the immune system.


2001 ◽  
Vol 6 (2) ◽  
pp. 91-99 ◽  
Author(s):  
Ilona Kariv ◽  
Mark P. Fereshteh ◽  
Kevin R. Oldenburg

The identification of a large number of biologically active chemical entities during high throughput screening (HTS) necessitates the incorporation of new strategies to identify compounds with druglike properties early during the lead prioritization and development process. One of the major steps in lead prioritization is the assessment of drug metabolism mediated by the cytochrome P450 (CYP) enzymes to evaluate the potential drug-drug interactions. CYP2D6 and CYP3A4 comprise the main human CYP enzymes involved in drug metabolism. The recent availability of specific CYP cDNA expression systems and the development of specific fluorescent probes have accelerated the ability to develop robust in vitro assays in HTS format. The aim of this study was to optimize conditions for the CYP2D6 and CYP3A4 HTS assays and subsequently adapt those assays to a miniaturized 384-well format. Assay conversion to a miniaturized format presents certain difficulties, such as robustness of the signal and of compound delivery. Thus the assay optimization involved the comparison of different substrates to identify those most suitable for use in a miniaturized format. Because of current technical limitations in liquid dispensing of nanoliter volumes, assay sensitivity to organic solvents also provides a main concern during assay miniaturization. Therefore, compound activity from redissolved dry films and from DMSO stocks directly delivered into assay buffer was compared. The data indicate that compound activity was comparable in both formats. The data support the conclusion that CYP2D6 and CYP3A4 in vitro metabolism assays can be successfully performed in 384-well plate format and the substrate potencies, as evaluated by the IC50 values, determined.


2004 ◽  
Vol 9 (7) ◽  
pp. 598-606 ◽  
Author(s):  
Silvia Miret ◽  
Leo Abrahamse ◽  
Els M. de Groene

Several in vitro assays have been developed to evaluate the gastrointestinal absorption of compounds. Our aim was to compare 3 of these methods: 1) the bio-mimetic artificial membrane permeability assay (BAMPA) method, which offers a high-throughput, noncellular approach to the measurement of passive transport; 2) the traditional Caco-2 cell assay, the use of which as a high-throughput tool is limited by the long cell differentiation time (21 days); and 3) The BioCoat™ high-throughput screening Caco-2 Assay System, which reduces Caco-2 cell differentiation to 3 days. The transport of known compounds (such as cephalexin, propranolol, or chlorothiazide) was studied at pH 7.4 and 6.5 in BAMPA and both Caco-2 cell models. Permeability data obtained was correlated to known values of human absorption. Best correlations ( r = 0.9) were obtained at pH 6.5 for BAMPA and at pH 7.4 for the Caco-2 cells grown for 21 days. The Caco-2 BioCoat™ HTS Caco-2 Assay System does not seem to be adequate for the prediction of absorption. The overall results indicate that BAMPA and the 21-day Caco-2 system can be complementary for an accurate prediction of human intestinal absorption.


Author(s):  
A J F Reardon ◽  
A Rowan-Carroll ◽  
S S Ferguson ◽  
K Leingartner ◽  
R Gagne ◽  
...  

Abstract Per- and polyfluoroalkyl substances (PFAS) are some of the most prominent organic contaminants in human blood. Although the toxicological implications of human exposure to perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) are well established, data on lesser-understood PFAS are limited. New approach methodologies (NAMs) that apply bioinformatic tools to high-throughput data are being increasingly considered to inform risk assessment for data-poor chemicals. The aim of this study was to compare the potencies (i.e., benchmark concentrations: BMCs) of PFAS in primary human liver microtissues (3D spheroids) using high-throughput transcriptional profiling. Gene expression changes were measured using TempO-seq, a templated, multiplexed RNA-sequencing platform. Spheroids were exposed for 1 or 10 days to increasing concentrations of 23 PFAS in three subgroups: carboxylates (PFCAs), sulfonates (PFSAs), and fluorotelomers and sulfonamides. PFCAs and PFSAs exhibited trends toward increased transcriptional potency with carbon chain-length. Specifically, longer-chain compounds (7 to 10 carbons) were more likely to induce changes in gene expression and have lower transcriptional BMCs. The combined high-throughput transcriptomic and bioinformatic analyses support the capability of NAMs to efficiently assess the effects of PFAS in liver microtissues. The data enable potency ranking of PFAS for human liver cell spheroid cytotoxicity and transcriptional changes, and assessment of in vitro transcriptomic points of departure. These data improve our understanding of the possible health effects of PFAS and will be used to inform read-across for human health risk assessment.


Marine Drugs ◽  
2019 ◽  
Vol 17 (6) ◽  
pp. 340 ◽  
Author(s):  
Jason Henry ◽  
Donald Wlodkowic

Identifying novel marine-derived neuroactive chemicals with therapeutic potential is difficult due to inherent complexities of the central nervous system (CNS), our limited understanding of the molecular foundations of neuro-psychiatric conditions, as well as the limited applications of effective high-throughput screening models that recapitulate functionalities of the intact CNS. Furthermore, nearly all neuro-modulating chemicals exhibit poorly characterized pleiotropic activities often referred to as polypharmacology. The latter renders conventional target-based in vitro screening approaches very difficult to accomplish. In this context, chemobehavioural phenotyping using innovative small organism models such as planarians and zebrafish represent powerful and highly integrative approaches to study the impact of new chemicals on central and peripheral nervous systems. In contrast to in vitro bioassays aimed predominantly at identification of chemicals acting on single targets, phenotypic chemobehavioural analysis allows for complex multi-target interactions to occur in combination with studies of polypharmacological effects of chemicals in a context of functional and intact milieu of the whole organism. In this review, we will outline recent advances in high-throughput chemobehavioural phenotyping and provide a future outlook on how those innovative methods can be utilized for rapidly screening and characterizing marine-derived compounds with prospective applications in neuropharmacology and psychosomatic medicine.


2018 ◽  
Vol 24 (1) ◽  
pp. 77-85
Author(s):  
Simon L. Currie ◽  
Steven L. Warner ◽  
Hariprasad Vankayalapati ◽  
Xiaohui Liu ◽  
Sunil Sharma ◽  
...  

ETS transcription factors from the ERG and ETV1/4/5 subfamilies are overexpressed in the majority of prostate cancer patients and contribute to disease progression. Here, we have developed two in vitro assays for the interaction of ETS transcription factors with DNA that are amenable to high-throughput screening. Using ETS1 as a model, we applied these assays to screen 110 compounds derived from a high-throughput virtual screen. We found that the use of lower-affinity DNA binding sequences, similar to those that ERG and ETV1 bind to in prostate cells, allowed for higher inhibition from many of these test compounds. Further pilot experiments demonstrated that the in vitro assays are robust for ERG, ETV1, and ETV5, three of the ETS transcription factors that are overexpressed in prostate cancer.


2020 ◽  
Author(s):  
Yuru Wang ◽  
Christopher D Katanski ◽  
Christopher Watkins ◽  
Jessica N Pan ◽  
Qing Dai ◽  
...  

Abstract AlkB is a DNA/RNA repair enzyme that removes base alkylations such as N1-methyladenosine (m1A) or N3-methylcytosine (m3C) from DNA and RNA. The AlkB enzyme has been used as a critical tool to facilitate tRNA sequencing and identification of mRNA modifications. As a tool, AlkB mutants with better reactivity and new functionalities are highly desired; however, previous identification of such AlkB mutants was based on the classical approach of targeted mutagenesis. Here, we introduce a high-throughput screening method to evaluate libraries of AlkB variants for demethylation activity on RNA and DNA substrates. This method is based on a fluorogenic RNA aptamer with an internal modified RNA/DNA residue which can block reverse transcription or introduce mutations leading to loss of fluorescence inherent in the cDNA product. Demethylation by an AlkB variant eliminates the blockage or mutation thereby restores the fluorescence signals. We applied our screening method to sites D135 and R210 in the Escherichia coli AlkB protein and identified a variant with improved activity beyond a previously known hyperactive mutant toward N1-methylguanosine (m1G) in RNA. We also applied our method to O6-methylguanosine (O6mG) modified DNA substrates and identified candidate AlkB variants with demethylating activity. Our study provides a high-throughput screening method for in vitro evolution of any demethylase enzyme.


1996 ◽  
Vol 24 (3) ◽  
pp. 325-331
Author(s):  
Iain F. H. Purchase

The title of this paper is challenging, because the question of how in vitro methods and results contribute to human health risk assessment is rarely considered. The process of risk assessment usually begins with hazard assessment, which provides a description of the inherent toxicological properties of the chemical. The next step is to assess the relevance of this to humans, i.e. the human hazard assessment. Finally, information on exposure is examined, and risk can then be assessed. In vitro methods have a limited, but important, role to play in risk assessment. The results can be used for classification and labelling; these are methods of controlling exposure, analogous to risk assessment, but without considering exposure. The Ames Salmonella test is the only in vitro method which is incorporated into regulations and used widely. Data from this test can, at best, lead to classification of a chemical with regard to genotoxicity, but cannot be used for classification and labelling on their own. Several in vitro test systems which assess the topical irritancy and corrosivity of chemicals have been reasonably well validated, and the results from these tests can be used for classification. The future development of in vitro methods is likely to be slow, as it depends on the development of new concepts and ideas. The in vivo methods which currently have reasonably developed in vitro alternatives will be the easiest to replace. The remaining in vivo methods, which provide toxicological information from repeated chronic dosing, with varied endpoints and by mechanisms which are not understood, will be more difficult to replace.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhou Fang ◽  
Junjian Chen ◽  
Ye Zhu ◽  
Guansong Hu ◽  
Haoqian Xin ◽  
...  

AbstractPeptides are widely used for surface modification to develop improved implants, such as cell adhesion RGD peptide and antimicrobial peptide (AMP). However, it is a daunting challenge to identify an optimized condition with the two peptides showing their intended activities and the parameters for reaching such a condition. Herein, we develop a high-throughput strategy, preparing titanium (Ti) surfaces with a gradient in peptide density by click reaction as a platform, to screen the positions with desired functions. Such positions are corresponding to optimized molecular parameters (peptide densities/ratios) and associated preparation parameters (reaction times/reactant concentrations). These parameters are then extracted to prepare nongradient mono- and dual-peptide functionalized Ti surfaces with desired biocompatibility or/and antimicrobial activity in vitro and in vivo. We also demonstrate this strategy could be extended to other materials. Here, we show that the high-throughput versatile strategy holds great promise for rational design and preparation of functional biomaterial surfaces.


Sign in / Sign up

Export Citation Format

Share Document