Effects of low oxygen short-term exposure at 15°C on postharvest physiology and quality of apricots harvested at two ripening stages

2000 ◽  
Vol 75 (2) ◽  
pp. 202-208 ◽  
Author(s):  
R. Botondi ◽  
A. Crisà ◽  
R. Massantini ◽  
F. Mencarelli
2017 ◽  
Vol 9 (402) ◽  
pp. eaam8060 ◽  
Author(s):  
Samuel J. Taylor ◽  
Johanna M. Duyvestyn ◽  
Samantha A. Dagger ◽  
Emma J. Dishington ◽  
Catherine A. Rinaldi ◽  
...  

We describe an approach to inhibit chemotherapy-induced myelosuppression. We found that short-term exposure of mice to the FLT3 inhibitor quizartinib induced the transient quiescence of multipotent progenitors (MPPs). This property of quizartinib conferred marked protection to MPPs in mice receiving fluorouracil or gemcitabine. The protection resulted in the rapid recovery of bone marrow and blood cellularity, thus preventing otherwise lethal myelosuppression. A treatment strategy involving quizartinib priming that protected wild-type bone marrow progenitors, but not leukemic cells, from fluorouracil provided a more effective treatment than conventional induction therapy in mouse models of acute myeloid leukemia. This strategy has the potential to be extended for use in other cancers where FLT3 inhibition does not adversely affect the effectiveness of chemotherapy. Thus, the addition of quizartinib to cancer treatment regimens could markedly improve cancer patient survival and quality of life.


2016 ◽  
Vol 10 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Ryuhei Sato ◽  
Peijun Gui ◽  
Kumiko Ito ◽  
Masahiro Kohzuki ◽  
Satoru Ebihara

Background: Previous studies have reported a relationship between particulate air pollution and respiratory symptoms or decline in lung function, but information about acute effects of short-term exposure to airborne particulate matter (PM) on cough and pulmonary function is scarce. Objective: To investigate the effect of short-term exposure to high concentrations of PM on the cough reflex threshold, urge-to-cough, pulmonary function, and cough-related quality of life in a group of healthy non-resident volunteers visiting Beijing, China. Methods: Seventeen healthy residents of Sendai, Japan, who planned to attend a meeting in Beijing, were recruited. We checked local air quality and measured cough reflex thresholds, urge-to-cough, pulmonary function, and Leicester Cough Questionnaire-acute (LCQ-acute) scores in the volunteers before, during, and after their trip to Beijing. Results: The PM2.5 and PM10 concentrations in Beijing were significantly higher than those in Japan on the measurement days. Cough reflex thresholds, expressed as nebulized citric acid concentrations required to induce ≥ 2 and ≥ 5 coughs, were significantly lower during the stay in Beijing than before or after the visit. Vital capacity, forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and FEV1/FVC were significantly lower during the stay in Beijing than before the trip. Similarly, the urge-to-cough threshold was significantly lower during the stay in Beijing than after the trip, as was the total LCQ-acute score. Conclusion: We tentatively concluded that short-term exposure to high PM concentrations may have adverse effects on cough reflex and urge-to-cough thresholds, pulmonary function, and cough-related quality of life.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Andrea J Morash ◽  
Jeremy M Lyle ◽  
Suzanne Currie ◽  
Justin D Bell ◽  
Kilian M Stehfest ◽  
...  

Abstract The endangered and range-restricted Maugean skate (Zearaja maugeana) is subjected to large environmental variability coupled with anthropogenic stressors in its endemic habitat, Macquarie Harbour, Tasmania. However, little is known about the basic biology/physiology of this skate, or how it may respond to future environmental challenges predicted from climate change and/or increases in human activities such as aquaculture. These skate live at a preferred depth of 5–15 m where the dissolved oxygen (DO) levels are moderate (~55% air saturation), but can be found in areas of the Harbour where DO can range from 100% saturation to anoxia. Given that the water at their preferred depth is already hypoxic, we sought to investigate their response to further decreases in DO that may arise from potential increases in anthropogenic stress. We measured oxygen consumption, haematological parameters, tissue–enzyme capacity and heat shock protein (HSP) levels in skate exposed to 55% dissolved O2 saturation (control) and 20% dissolved O2 saturation (hypoxic) for 48 h. We conclude that the Maugean skate appears to be an oxyconformer, with a decrease in the rate of O2 consumption with increasing hypoxia. Increases in blood glucose and lactate at 20% O2 suggest that skate are relying more on anaerobic metabolism to tolerate periods of very low oxygen. Despite these metabolic shifts, there was no difference in HSP70 levels between groups, suggesting this short-term exposure did not elicit a cellular stress response. The metabolic state of the skate suggests that low oxygen stress for longer periods of time (i.e. >48 h) may not be tolerable and could potentially result in loss of habitat or shifts in their preferred habitat. Given its endemic distribution and limited life-history information, it will be critical to understand its tolerance to environmental challenges to create robust conservation strategies.


PLoS ONE ◽  
2007 ◽  
Vol 2 (5) ◽  
pp. e416 ◽  
Author(s):  
Shih-Chieh Hung ◽  
Radhika R. Pochampally ◽  
Shu-Ching Hsu ◽  
Cecelia Sanchez ◽  
Sy-Chi Chen ◽  
...  

2021 ◽  
Vol 12 ◽  
pp. 204173142199084
Author(s):  
Alexander RA Szojka ◽  
Rita de Cássia Marqueti ◽  
David Xinzheyang Li ◽  
Clayton W Molter ◽  
Yan Liang ◽  
...  

This study investigates the transcriptome response of meniscus fibrochondrocytes (MFCs) to the low oxygen and mechanical loading signals experienced in the knee joint using a model system. We hypothesized that short term exposure to the combined treatment would promote a matrix-forming phenotype supportive of inner meniscus tissue formation. Human MFCs on a collagen scaffold were stimulated to form fibrocartilage over 6 weeks under normoxic (NRX, 20% O2) conditions with supplemented TGF-β3. Tissues experienced a delayed 24h hypoxia treatment (HYP, 3% O2) and then 5 min of dynamic compression (DC) between 30 and 40% strain. Delayed HYP induced an anabolic and anti-catabolic expression profile for hyaline cartilage matrix markers, while DC induced an inflammatory matrix remodeling response along with upregulation of both SOX9 and COL1A1. There were 41 genes regulated by both HYP and DC. Overall, the combined treatment supported a unique gene expression profile favouring the hyaline cartilage aspect of inner meniscus matrix and matrix remodeling.


2019 ◽  
Vol 61 (1) ◽  
pp. 87
Author(s):  
Е.А. Михалева ◽  
И.Н. Флёров ◽  
М.В. Горев ◽  
А.В. Шабанов

AbstractThe effect of thermal cycling and sintering temperature on the chemical and thermodynamic stability of the bulk multiferroic x La_0.7Pb_0.3MnO_3–(1 – x )PbTiO_3 quasi-ceramic and ceramic composites has been experimentally investigated. It is shown that the limiting temperature of the long-term sample firing should not exceed 1070 K. It has been found that sintering at this temperature and/or short-term exposure of the samples at higher temperatures (up to 1220 K) significantly increase the sample compactness, stabilize the thermal expansion, and enhance the quality of the composites. It has been established that the component grain integrity is violated by shrinkage of the samples and a sharp change in their volume during the phase transition of a ferroelectric component.


Author(s):  
Shem Unger ◽  
Reuben R Goforth ◽  
Olin E Rhodes ◽  
Thomas Floyd

Freshwater ecosystems are increasingly impacted by anthropogenic elevated levels of suspended sediment that may negatively affect aquatic organisms, including salamanders. While increasing fine sediment in streams has been suggested as a reason for population declines, to date no study has empirically assessed the effect of suspended sediment on gilled larval Eastern Hellbenders (Cryptobranchus alleganiensis Daudin, 1803), a critical life history stage and species of conservation concern. We used custom respirometers to elucidate effects of suspended sediments on larval Hellbender oxygen uptake in trials conducted in situ in Georgia streams. Mean oxygen uptake increased and was significantly higher in trials when larval salamanders were exposed to suspended sediment (mean = 5.06 O2 mg/L, 800 mg/L sediment treatment vs 2.25 O2 mg/L, 0.00 mg/L sediment control). This may indicate elevated physiological stress in response to short term exposure to suspended sediments. Qualitatively, individuals in both groups exhibited rocking behavior in response to low oxygen (hypoxia), albeit at different frequencies (sediment exposure = 7.6 rocks per minute and control = 2.1 rocks per minute). Larval salamanders may be able to temporarily compensate for low oxygen through increased rocking behavior when high suspended sediment loads are present, with future respirometry research needed.


Nanomaterials ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 337 ◽  
Author(s):  
James Ede ◽  
Kimberly Ong ◽  
Michael Goergen ◽  
Alan Rudie ◽  
Cassidy Pomeroy-Carter ◽  
...  

Cellulose nanomaterials (CNs) are emerging advanced materials with many unique properties and growing commercial significance. A life-cycle risk assessment and environmental health and safety roadmap identified potential risks from inhalation of powdered CNs in the workplace as a key gap in our understanding of safety and recommended addressing this data gap to advance the safe and successful commercialization of these materials. Here, we (i) summarize the currently available published literature for its contribution to our current understanding of CN inhalation hazard and (ii) evaluate the quality of the studies for risk assessment purposes using published study evaluation tools for nanomaterials to assess the weight of evidence provided. Our analysis found that the quality of the available studies is generally inadequate for risk assessment purposes but is improving over time. There have been some advances in knowledge about the effects of short-term inhalation exposures of CN. The most recent in vivo studies suggest that short-term exposure to CNs results in transient inflammation, similarly to other poorly soluble, low toxicity dusts such as conventional cellulose, but is markedly different from fibers with known toxicity such as certain types of multiwalled carbon nanotubes or asbestos. However, several data gaps remain, and there is still a lack of understanding of the effects from long-term, low-dose exposures that represent realistic workplace conditions, essential for a quantitative assessment of potential health risk. Therefore, taking precautions when handling dry forms of CNs to avoid dust inhalation exposure is warranted.


Sign in / Sign up

Export Citation Format

Share Document