Experimental investigation of the influence of Reynolds number and buoyancy on the flow development of a plane jet in the transitional regime

2020 ◽  
Vol 22 (1) ◽  
pp. 26-47
Author(s):  
P. R. Suresh ◽  
T. Sundararajan ◽  
K. Srinivasan ◽  
Sarit K. Das
2008 ◽  
Vol 20 (4) ◽  
pp. 044105 ◽  
Author(s):  
P. R. Suresh ◽  
K. Srinivasan ◽  
T. Sundararajan ◽  
Sarit K. Das

2018 ◽  
Vol 12 (3) ◽  
pp. 255
Author(s):  
Muhammad Zal Aminullah Daman Huri ◽  
Shabudin Bin Mat ◽  
Mazuriah Said ◽  
Shuhaimi Mansor ◽  
Md. Nizam Dahalan ◽  
...  

AIChE Journal ◽  
2016 ◽  
Vol 63 (6) ◽  
pp. 2394-2408 ◽  
Author(s):  
Matthieu Roudet ◽  
Anne‐Marie Billet ◽  
Sébastien Cazin ◽  
Frédéric Risso ◽  
Véronique Roig

Author(s):  
Jian Pu ◽  
Zhaoqing Ke ◽  
Jianhua Wang ◽  
Lei Wang ◽  
Hongde You

This paper presents an experimental investigation on the characteristics of the fluid flow within an entire coolant channel of a low pressure (LP) turbine blade. The serpentine channel, which keeps realistic blade geometry, consists of three passes connected by a 180° sharp bend and a semi-round bend, 2 tip exits and 25 trailing edge exits. The mean velocity fields within several typical cross sections were captured using a particle image velocimetry (PIV) system. Pressure and flow rate at each exit were determined through the measurements of local static pressure and volume flow rate. To optimize the design of LP turbine blade coolant channels, the effect of tip ejection ratio (ER) from 180° sharp bend on the flow characteristics in the coolant channel were experimentally investigated at a series of inlet Reynolds numbers from 25,000 to 50,000. A complex flow pattern, which is different from the previous investigations conducted by a simplified square or rectangular two-pass U-channel, is exhibited from the PIV results. This experimental investigation indicated that: a) in the main flow direction, the regions of separation bubble and flow impingement increase in size with a decrease of the ER; b) the shape, intensity and position of the secondary vortices are changed by the ER; c) the mass flow ratio of each exit to inlet is not sensitive to the inlet Reynolds number; d) the increase of the ER reduces the mass flow ratio through each trailing edge exit to the extent of about 23–28% of the ER = 0 reference under the condition that the tip exit located at 180° bend is full open; e) the pressure drop through the entire coolant channel decreases with an increase in the ER and inlet Reynolds number, and a reduction about 35–40% of the non-dimensional pressure drop is observed at different inlet Reynolds numbers, under the condition that the tip exit located at 180° bend is full open.


Author(s):  
Wu Guochuan ◽  
Zhuang Biaonan ◽  
Guo Bingheng

24 double circular are tandem blade cascades of three different chord-ratios were investigated under different displacements in peripheral and axial direction. The inlet Mach number was 0.3. The Reynolds number based on blade chord was 2.7×105. The characteristics of the tandem blade cascades, such as the dependence of turning angle and coefficient of total pressure loss on incidence angle were obtained. The ranges of main geometrical parameters under optimal conditions were recommended.


1971 ◽  
Vol 47 (1) ◽  
pp. 21-31 ◽  
Author(s):  
R. A. Despard ◽  
J. A. Miller

The results of an experimental investigation of separation in oscillating laminar boundary layers is reported. Instantaneous velocity profiles obtained with multiple hot-wire anemometer arrays reveal that the onset of wake formation is preceded by the initial vanishing of shear at the wall, or reverse flow, throughout the entire cycle of oscillation. Correlation of the experimental data indicates that the frequency, Reynolds number and dynamic history of the boundary layer are the dominant parameters and oscillation amplitude has a negligible effect on separation-point displacement.


1935 ◽  
Vol 39 (295) ◽  
pp. 619-632
Author(s):  
TH. Von karman ◽  
Clark B. Millikan

The problem of the maximum lift of airfoils has concerned the authors greatly since there were first discovered in the spring of 1932 serious discrepancies in this characteristic between results obtained in the wind tunnel of the Guggenheim Aeronautics Laboratory at the California Institute of Technology (GALCIT) and those reported from certain other wind tunnels. An elaborate experimental investigation by the junior author and A. L. Klein indicated that the value of CLmax for a given airfoil was strongly affected both by Reynolds number and by the degree of turbulence in the tunnel wind stream.


Author(s):  
Avadhesh Kumar Sharma ◽  
Mayank Modak ◽  
Santosh K. Sahu

Impinging jets are commonly utilized in the run-out table (ROT) cooling in the hot rolling process in steel manufacturing industries. The phenomenon of rapid cooling of a sufficiently hot surface is termed as the quenching. The present paper reports the rewetting behavior of 0.15 mm thick hot moving stainless steel foil (SS-304) by circular impinging jet from bottom side through experimental investigation. The transient temperature of the hot foil is recorded by using thermal imaging camera (A655sc, FLIR system). Tests are performed for a varied range of Reynolds number (Re = 2500–10000), nozzle to plate distance (z/d = 6), moving plate velocity (0–40 mm/s) and initial surface temperature 500±10 °C. Transient temperature obtained from thermal imaging camera is used to evaluate rewetting time and rewetting velocity. Based on the experimental investigation correlation has been proposed to predict non-dimensional rewetting velocity as a function of various parameters, namely, Reynolds number, non-dimensional axial distance and moving plate velocity.


Sign in / Sign up

Export Citation Format

Share Document