The Impact of a Change to Inhalable Occupational Exposure Limits: Strontium Chromate Exposure in the U.S. Air Force

AIHA Journal ◽  
2003 ◽  
Vol 64 (3) ◽  
pp. 306-311 ◽  
Author(s):  
Gary N. Carlton
2019 ◽  
Vol 76 (Suppl 1) ◽  
pp. A24.2-A24
Author(s):  
Alex Keil ◽  
David Richardson ◽  
Daniel Westreich ◽  
Kyle Steenland

BackgroundRespiratory exposure to silica is associated with the risk of death due to malignant and non-malignant disease. 2.3 million U.S. workers are exposed to silica. Occupational exposure limits for silica are derived from a number of lines of evidence, including observational studies. Observational studies may be subject to healthy worker survivor bias, which could result in underestimates of silica’s impact on worker mortality and, in turn, bias risk estimates for occupational exposure limits.MethodsUsing data on 65 999 workers pooled across multiple industries, we estimate the impacts of several hypothetical occupational exposure limits on silica exposure on lung cancer and all-cause mortality. We use the parametric g-formula, which can account for healthy worker survivor bias.ResultsAssuming we could eliminate occupational exposure, we estimate that there would be 20.7 fewer deaths per 1000 workers in our pooled study by age 80 (95% confidence interval: 14.5, 26.8), including 3.91 fewer deaths due to lung cancer (95% CI: 1.53, 6.30). Less restrictive interventions demonstrated smaller, but still substantial risk reductions.ConclusionsOur results suggest that occupational exposure limits for silica can be further strengthened to reduce silica-associated mortality and illustrate how current risk analysis for occupational limits can be improved.


Author(s):  
Inese Mārtiņsone ◽  
Mārīte-Ārija Baķe ◽  
Žanna Martinsone ◽  
Maija Eglīte

Possible hazards of work environment in metal processing industry in Latvia The aim of this study was to investigate risk factors in the work environment of Latvian metal processing industry using the database of the Laboratory of Hygiene and Occupational Diseases of the Institute of Occupational Safety and Environmental Health, Rīga Stradiņš University. During the period between 1996 and 2005, 703 measurements were made in metalworking enterprises. In Latvia, approximately 2.4% of the workforce is involved in the metal processing industry. Physical (noise, lighting, vibration) and chemical (abrasive dust, welding aerosol and contained metals) risk factors were analysed. In the assessed metalworking workplaces, the work environment was estimated to be of poor quality, because occupational exposure limits or recommended values were exceeded in 42% (n = 294) of cases. Noise, manganese and welding aerosols most often exceeded the occupational exposure limits or recommended values, the significance was P < 0.001, P < 0.01 and P < 0.05, respectively.


2022 ◽  
Vol 99 ◽  
pp. 103641
Author(s):  
Rostam Golmohammadi ◽  
Ebrahim Darvishi ◽  
Masoud Shafiee Motlagh ◽  
Javad Faradmal ◽  
Mohsen Aliabadi ◽  
...  

2020 ◽  
Vol 36 (9) ◽  
pp. 619-633
Author(s):  
G Scott Dotson ◽  
Jason T Lotter ◽  
Rachel E Zisook ◽  
Shannon H Gaffney ◽  
Andrew Maier ◽  
...  

Antimicrobial agents have become an essential tool in controlling the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and guidelines on their use have been issued by various public health agencies. Through its Emerging Viral Pathogen Guidance for Antimicrobial Pesticides, the US Environmental Protection Agency has approved numerous surface disinfectant products for use against SARS-CoV-2. Despite their widespread use and range of associated health hazards, the majority of active ingredients in antimicrobial products, such as surface disinfectants, lack established occupational exposure limits (OELs) to assist occupational health professionals in characterizing risks from exposures to these chemicals. Based on established approaches from various organizations, a framework for deriving OELs specific to antimicrobial agents was developed that relies on a weight-of-evidence evaluation of the available data. This framework involves (1) a screening-level toxicological assessment based on a review of the existing literature and recommendations, (2) identification of the critical adverse effect(s) and dose–response relationship(s), (3) identification of alternative health-based exposure limits (HBELs), (4) derivation of potential OELs based on identified points of departure and uncertainty factors and/or modification of existing alternative HBELs, and (5) selection of an appropriate OEL. To demonstrate the use of this framework, a case study is described for selection of an OEL for a disinfectant product containing quaternary ammonium compounds (quats). Three potential OELs were derived for this product based on irritation toxicity data, developmental and reproductive toxicity (DART) data, and modification of an existing HBEL. The final selected OEL for the quats-containing product was 0.1 mg/m3, derived from modification of an existing HBEL. This value represented the lowest resulting value of the three approaches, and thus, was considered protective of irritation and potential DART.


Sign in / Sign up

Export Citation Format

Share Document