Experimental determination of elastic modulus of elasticity and Poisson’s coefficient of date palm tree fiber

2018 ◽  
Vol 16 (3) ◽  
pp. 357-367 ◽  
Author(s):  
Youcef Djebloun ◽  
Mabrouk Hecini ◽  
Tarek Djoudi ◽  
Belhi Guerira
1962 ◽  
Vol 57 (165) ◽  
pp. 651-660 ◽  
Author(s):  
Ichiro Sakurada ◽  
Yasuhiko Nukushina ◽  
Taisuke Ito

2017 ◽  
Vol 6 (6) ◽  
pp. 292 ◽  
Author(s):  
Moro Olivier Boffoue ◽  
Brahiman Traore ◽  
Conand Honoré Kouakou ◽  
Kokou Esso Atcholi ◽  
Remy Lachat ◽  
...  

2014 ◽  
Vol 683 ◽  
pp. 22-27 ◽  
Author(s):  
Ján Boroška ◽  
Alena Pauliková ◽  
Vladimír Ivančo

Modulus of elasticity of steel wire rope (elastic modulus) is a characteristic value, which is important not only for users of the steel rope, but also for designers of machines and machinery that are equipped with the steel wire rope. Values of the elastic modulus depends predominately on the elastic modulus of the material, which the rope is manufactured from as well as it depends on the various other factors. The most important influencing factors are as follows: rope construction, type of core, angle and way of wire stranding, angle and way of rope lay as well as kind of lubricant. The real value of the elastic modulus has also impact on prolongation of the steel wire rope and on intensity of its dynamical loading. The rope elastic modulus value can be determined by means of the various methods. There are analysed in this article such methods for determination of the rope elastic modulus, which can be applied for a computer simulation.


Materials ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 6933
Author(s):  
Yurii Barabanshchikov ◽  
Hien Pham ◽  
Kseniia Usanova

This work aimed to study the effect of a microfibrillated cellulose additive on strength, elastic modulus, heat release, and shrinkage of mortar and concrete. The dosage of the additive varies from 0.4 to 4.5% by weight of the cement. The change in strength with an increase in the dosage of the additive occurred in a wave-like manner. The uneven character of the change in the results also took place in the determination of heat release and shrinkage. In general, heat release and shrinkage decreased at increasing additive dosage. The additive showed the greatest decrease in the heat release of concrete at a content of 2%. The heat release of concrete practically differed little from the exotherm of the standard at an additive content of 1 and 1.5%. The addition of microfibrillated cellulose additive in small (0.5%) and large (1.5%) amounts reduced shrinkage compared to the reference, and at an intermediate content (1%), the shrinkage was higher than in the reference specimens. In this case, the water evaporation rate from concrete increased with an increase in the additive. With an increase in the additive dosage, the modulus of elasticity decreases. Thus, the microfibrillated cellulose additive provides concrete with lower values of the modulus of elasticity, heat release, and shrinkage, and the additive is recommended for use in concretes with increased crack resistance during the hardening period. The recommended additive content is 0.5% by weight of cement. At the specified dosage, it is possible to provide the class of concrete in terms of compressive strength C35/45.


Sign in / Sign up

Export Citation Format

Share Document