scholarly journals Subsidence in the Kathmandu Basin, before and after the 2015 Mw 7.8 Gorkha Earthquake, Nepal Revealed from Small Baseline Subset-DInSAR Analysis

2018 ◽  
Vol 55 (4) ◽  
pp. 604-621 ◽  
Author(s):  
Suresh Krishnan P.V. ◽  
Duk-jin Kim ◽  
Jungkyo Jung
2021 ◽  
Author(s):  
Mahmud Haghshenas Haghighi ◽  
Mahdi Motagh

<p>In April 2019, large parts of Khuzestan province in Iran were affected by intense record rainfall in the Zagros mountains. Persian Gulf catchment received approximately 30% of its long-term average rainfall over the course of a few days. Karkheh and Dez, two of the major rivers in this catchment, overflowed their banks. As several dams, including Karkheh, with the country's largest capacity, reached their limits, the water had to be released from the reservoirs, which resulted in flooding downstream of the dams. Several cities and more than 200 villages were flooded, and many people had to be evacuated. Many of the dams affected by the 2019 flood were embankment dams,  previously reported to exhibit post-construction settlements, at places reaching 13 cm/yr. Therefore, during and after the flood,  significant concerns were raised about their health and stability.</p><p>In this study, we use Sentinel-1 InSAR to monitor embankment dams' response in Khuzestan to the 2019 flood event. We process the full archive of Sentinel-1 using the Small Baseline Subset approach and estimate the time series of displacement for three different embankment dams in Khuzestan province. The first two studied dams are Karkheh and Gotvand, which have the country's largest capacities and became operational in 2001 and 2012, respectively. The third studied dam is the Masjed-Soleyman dam, previously reported to sustain a high displacement rate since its operation in 2002.</p><p>The Sentinel-1 InSAR displacement results indicate that all observed dams exhibit long-term post-construction settlement before the flood, with rates varies from approximately 1 cm/yr for the Karkheh dam to 5 cm/yr for Gotvand dam and 8 cm/yr for Masjed-Soleyman dam. The time series of displacement for Karkheh and Gotvand dams show gentle changes of displacement in response to the increase in water level following the flood. However, for the Masjed-Soleyman dam, the movement accelerates sharply after the flood with more than 2 cm of displacement on the crest in only two months. For the Masjed-Soleyman dam experiencing the most severe effect of the flood, we also analyzed high-resolution data from TerraSAR-X and COSMO-SkyMed. The results provide a detailed picture of the displacement pattern over the crest and the dam's body before and after the flood.</p>


2019 ◽  
Vol 19 (10) ◽  
pp. 2229-2240 ◽  
Author(s):  
Qingyun Zhang ◽  
Yongsheng Li ◽  
Jingfa Zhang ◽  
Yi Luo

Abstract. The Qinghai–Tibet Railway is located on the Qinghai–Tibet Plateau and is the highest-altitude railway in the world. With the influence of human activities and geological disasters, it is necessary to monitor ground deformation along the Qinghai–Tibet Railway. In this paper, Advanced Synthetic Aperture Radar (ASAR) (T405 and T133) and TerraSAR-X data were used to monitor the Lhasa–Naqu section of the Qinghai–Tibet Railway from 2003 to 2012. The data period covers the time before and after the opening of the railway (total of 10 years). This study used full rank matrix small baseline subset InSAR (FRAM-SBAS) time-series analysis to analyze the Qinghai–Tibet Railway. Before the opening of the railway (from 2003 to 2005), the Lhasa–Naqu road surface deformation was not obvious, with a maximum deformation of approximately 5 mm yr−1; in 2007, the railway was completed and opened to traffic, and the resulting subsidence of the railway in the district of Damxung was obvious (20 mm yr−1). After the opening of the railway (from 2008 to 2010), the Damxung segment included a considerable area of subsidence, while the northern section of the railway was relatively stable. The results indicate that FRAM-SBAS technology is capable of providing comprehensive and detailed subsidence information regarding railways with millimeter-level accuracy. An analysis of the distribution of geological hazards in the Damxung area revealed that the distribution of the subsidence area coincided with that of the geological hazards, indicating that the occurrence of subsidence in the Damxung area was related to the influence of surrounding geological hazards and faults. Overall, the peripheral surface of the Qinghai–Tibet Railway is relatively stable but still needs to be verified with real-time monitoring to ensure that the safety of the railway is maintained.


2021 ◽  
Author(s):  
Mehdi Darvishi ◽  
Fernando Jaramillo

<p>In the recent years, southern Sweden has experienced drought conditions during the summer with potential risks of groundwater shortages. One of the main physical effects of groundwater depletion is land subsidence, a geohazard that potentially damages urban infrastructure, natural resources and can generate casualties. We here investigate land subsidence induced by groundwater depletion and/or seasonal variations in Gotland, an agricultural island in the Baltic Sea experiencing recent hydrological droughts in the summer. Taking advantage of the multiple monitoring groundwater wells active on the island, we explore the existence of a relationship between groundwater fluctuations and ground deformation, as obtained from Interferometric Synthetic Aperture Radar (InSAR). The aim in the long-term is to develop a high-accuracy map of land subsidence with an appropriate temporal and spatial resolution to understand groundwater changes in the area are recognize hydroclimatic and anthropogenic drivers of change.</p><p>We processed Sentinel-1 (S1) data, covering the time span of 2016-2019, by using the Small BAseline Subset (SBAS) to process 119 S1-A/B data (descending mode). The groundwater level of Nineteen wells distributed over the Gotland island were used to assess the relationship between groundwater depletion and the detected InSAR displacement. In addition to that, the roles of other geological key factors such as soil depth, ground capacity in bed rock, karstification, structure of bedrock and soil type in occurring land subsidence also investigated. The findings showed that the groundwater level in thirteen wells with soil depths of less than 5 meters correlated well with InSAR displacements. The closeness of bedrock to ground surface (small soil depth) was responsible for high coherence values near the wells, and enabled the detection land subsidence. The results demonstrated that InSAR could use as an effective monitoring system for groundwater management and can assist in predicting or estimating low groundwater levels during summer conditions.</p>


2018 ◽  
Vol 10 (12) ◽  
pp. 2025 ◽  
Author(s):  
Lianhuan Wei ◽  
Yun Zhang ◽  
Zhanguo Zhao ◽  
Xiaoyu Zhong ◽  
Shanjun Liu ◽  
...  

The mining waste of open pit mines is usually piled-up in dump sites, making a man-made hill more than tens of meters high. Because of the loose structure of the dump sites, landslides or debris flow may occur after heavy rainfall, threatening local lives and properties. Therefore, dump stability analysis is crucial for ensuring local safety. In this paper, a collaborative stability analysis based on multiple remote sensing technologies was innovatively conducted at the Xudonggou dump of the Anqian iron mine. A small baseline subset (SBAS) analysis was used to derive the spatial and temporal distributions of displacements in the line-of sight (LOS) over the whole study area. The deformation in LOS is translated to the slope direction based on an assumption that displacements only occur parallel to the slope surface. Infrared Thermography (IRT) technology was used to detect weak aquifer layers located at the toe of possible landslide bodies. Then, numerical simulations based on the limit equilibrium method were conducted to calculate the factor of safety for three profiles located on the dump site. The results, emerging from multiple remote sensing technologies, were very consistent and, eventually, the landslide hazard zone of the Xudonggou dump site was outlined.


Author(s):  
G. Artese ◽  
S. Fiaschi ◽  
D. Di Martire ◽  
S. Tessitore ◽  
M. Fabris ◽  
...  

The Emilia Romagna Region (N-E Italy) and in particular the Adriatic Sea coastline of Ravenna, is affected by a noticeable subsidence that started in the 1950s, when the exploitation of on and off-shore methane reservoirs began, along with the pumping of groundwater for industrial uses. In such area the current subsidence rate, even if lower than in the past, reaches the -2 cm/y. Over the years, local Authorities have monitored this phenomenon with different techniques: spirit levelling, GPS surveys and, more recently, Differential Interferometric Synthetic Aperture Radar (DInSAR) techniques, confirming the critical situation of land subsidence risk. In this work, we present the comparison between the results obtained with DInSAR and GPS techniques applied to the study of the land subsidence in the Ravenna territory. With regard to the DInSAR, the Small Baseline Subset (SBAS) and the Coherent Pixel Technique (CPT) techniques have been used. Different SAR datasets have been exploited: ERS-1/2, ENVISAT, TerraSAR-X and Sentinel-1. Some GPS campaigns have been also carried out in a subsidence prone area. 3D vertices have been selected very close to existing persistent scatterers in order to link the GPS measurement results to the SAR ones. GPS data were processed into the International reference system and the comparisons between the coordinates, for the first 6 months of the monitoring, provided results with the same trend of the DInSAR data, even if inside the precision of the method.


2021 ◽  
Author(s):  
Binayak Ghosh ◽  
Mahdi Motagh ◽  
Mahmud Haghshenas Haghshenas ◽  
Thomas Walter

<p>Over the years, various satellites like ERS-1, ERS-2 and Envisat has been in use for the interferometric capability for a wide range of geophysical and environmental applications. With the launches of Sentinel-1A and 1B satellites in 2014 and 2016 respectively, the availability of SAR data from every part of the world has been increased many folds. With short revisit times of 1-6 days, the Sentinel-1 and the planned Tandem-Land NISAR missions provide an unprecedented wealth of topography and surface change data using InSAR technique. Utilizing these Synthetic Aperture Radar (SAR) acquisitions, repeated approximately from the same point in space at different times, it is possible to produce measurements of ground deformations at some of the world’s active volcanoes and can be used to detect signs of volcanic unrest. Most of the existing traditional algorithms like Permanent Scatterer (PS) analysis and Small Baseline Subset (SBAS) technique are computationally extensive and cannot be applied in near real time to detect  precursory deformation and transient deformations. To overcome this problem, we have adapted a minimum spanning tree (MST) based spatial independent component analysis (ICA) method to automatically detect deformation signals of volcanic unrest. We utilize the algorithm’s capability to isolate signals of geophysical interest from atmospheric artifacts, topography and other noise signals, before monitoring the evolution of these signals through time in order to detect the onset of a period of volcanic unrest, in near real time. We demonstrate our approach on synthetic datasets having different signal strengths, varying temporally. We also present the results of our approach on the volcanic unrest of Mt. Thorbjörn in Iceland on 2020 and also the volcanic unrest of a volcano in Mexico from 2017 to 2019.</p>


2019 ◽  
Vol 11 (14) ◽  
pp. 1673 ◽  
Author(s):  
Qiong Wu ◽  
Chunting Jia ◽  
Shengbo Chen ◽  
Hongqing Li

Yan’an new district (YND) is one of the largest civil engineering projects for land creation in Loess Plateau, of which the amount of earthwork exceeds 600 million m3, to create 78.5 km2 of flat land. Such mega-scale engineering activities and complex geological characteristics have induced wide land deformation in the region. Small baseline subset synthetic aperture radar interferometry (SBAS-InSAR) method and 55 Sentinel-1A (S-1A) images were utilized in the present work to investigate the urban surface deformation in the Yan’an urban area and Yan’an new airport (YNA) from 2015 to 2019. The results were validated by the ground leveling measurements in the YNA. It is found that significant uneven surface deformation existed in both YND and YNA areas with maximum accumulative subsidence of 300 and 217 mm, respectively. Moreover, the average subsidence rate of the YND and YNA areas ranged from −70 to 30 mm/year and −50 to 25 mm/year, respectively. The present work shows that the land deformation suffered two periods (from 2015 to 2017 and from 2017 to 2019) and expanded from urban center to surrounding resettlement area, which are highly relevant with urban earthwork process. It is found that more than 60% of land subsidence occurs at filled areas, while more than 65% of surface uplifting occurs at excavation areas. The present work shows that the subsidence originates from the earth filling and the load of urban buildings, while the release of stress is the major factor for the land uplift. Moreover, it is found that the collapsibility of loess and concentrated precipitation deteriorates the degree of local land subsidence. The deformation discovered by this paper shows that the city may suffer a long period of subsidence, and huge challenges may exist in the period of urban maintaining buildings and infrastructure facilities.


Teknik ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 126
Author(s):  
Arliandy Pratama Arbad ◽  
Wataru Takeuchi ◽  
Yosuke Aoki ◽  
Achmad Ardy ◽  
Mutiara Jamilah

Penginderaan jauh kini memainkan peranan penting dalam pengamatan perilaku gunung api. Penelitian ini bertujuan untuk mengamati deformasi permukaan Gunung Bromo, yang terletak di Jawa bagian Timur, Indonesia, yang masuk dalam rangkaian sistem volkanik di Taman Nasional Bukit Tengger Semeru (TNBTS). Penggunaan algoritma SAR Interferometry (InSAR) yang disebut sebagai pendekatan Small Baseline Subset (SBAS) memungkinkan perancangan peta kecepatan deformasi rata-rata dan and peta time series displacement di wilayah kajian. Teknik SBAS yang biasa menghasilkan rangkaian observasi tahap interferometrik. Ini tercatat sebagai kombinasi linear dari nilai fase SAR  scene untuk setiap pixel secara tersendiri. Analisis yang dilakukan terutama berdasarkan 22 data SAR data yang diperoleh melalui sensor ALOS/PALSAR selama kurun waktu 2007–2011. Beberapa penelitian menunjukkan bahwa kemampuan analisis InSAR dalam menyelidiki siklus gunung api, terutama Gunung Bromo yang memiliki karakteristik erupsi stratovolcano dalam satu hingga lima tahun. Analisis hasil memperlihatkan adanya kemajuan dari kajian sebelumnya akan InSAR wilayah tersebut, yang lebih fokus  kepada deformasi yang berpengaruh kepada kaldera. Hal ini menunjukkan bahwa penelitian ini bisa diimplementasikan pada manajemen risiko atau manajemen infrastruktur


Sign in / Sign up

Export Citation Format

Share Document