scholarly journals Protecting the Communication Structure in Sensor Networks

2005 ◽  
Vol 1 (2) ◽  
pp. 187-203 ◽  
Author(s):  
S. Olariu ◽  
Q. Xu ◽  
M. Eltoweissy ◽  
A. Wadaa ◽  
A. Y. Zomaya

In the near future wireless sensor networks will be employed in a wide variety of applications establishing ubiquitous networks that will pervade society. The inherent vulnerability of these massively deployed networks to a multitude of threats, including physical tampering with nodes exacerbates concerns about privacy and security. For example, denial of service attacks (DoS) that compromise or disrupt communications or target nodes serving key roles in the network, e.g. sink nodes, can easily undermine the functionality as well as the performance delivered by the network. Particularly vulnerable are the components of the communications or operation infrastructure. Although, by construction, most sensor network systems do not possess a built-in infrastructure, a virtual infrastructure, that may include a coordinate system, a cluster structure, and designated communication paths, may be established post-deployment in support of network management and operation. Since knowledge of this virtual infrastructure can be instrumental for successfully compromising network security, maintaining the anonymity of the virtual infrastructure is a primary security concern. Somewhat surprisingly, in spite of its importance, the anonymity problem has not been addressed in wireless sensor networks. The main contribution of this work is to propose an energy-efficient protocol for maintaining the anonymity of the virtual infrastructure in a class of sensor network systems. Our solution defines schemes for randomizing communications such that the cluster structure, and coordinate system used remain undetectable and invisible to an observer of network traffic during both the setup and operation phases of the network.

Author(s):  
KHYATI SHRIVASTAV ◽  
ASWATH A.R.

In the wireless sensor networks, the communication links between sensor nodes is important. This paper presents the analysis on the effect of parameters of network size, number of nodes and communication ranges on the number of communication links in the sensor network systems. The MATLAB tool is used for deployment of sensor nodes in various area fields.


Author(s):  
Azeem Mohammed Abdul ◽  
Syed Umar

<p>The emergence of wireless sensor networks as one of the technology trends in the coming years, and some special tests of safety. The event will be thousands of tiny sensors that cheap devices, memory, radio and make, in most cases, no access to the production and energy. Some great challenges of sensor networks are different; we focus on security in the form of wireless sensor networks. To some network wireless sensor network in order to optimize use of the sensor, so that the network can be as long as possible. But the management of the important mission of the sensor network, denial of service (DoS) attacks against the destruction of the efficient use of network resources and the vital functions of the network. DoS attacks can be one of the greatest threats to security threats be considered. In fact, there are many different layers of the OSI-DOS.</p>


2018 ◽  
Vol 7 (2.26) ◽  
pp. 25
Author(s):  
E Ramya ◽  
R Gobinath

Data mining plays an important role in analysis of data in modern sensor networks. A sensor network is greatly constrained by the various challenges facing a modern Wireless Sensor Network. This survey paper focuses on basic idea about the algorithms and measurements taken by the Researchers in the area of Wireless Sensor Network with Health Care. This survey also catego-ries various constraints in Wireless Body Area Sensor Networks data and finds the best suitable techniques for analysing the Sensor Data. Due to resource constraints and dynamic topology, the quality of service is facing a challenging issue in Wireless Sensor Networks. In this paper, we review the quality of service parameters with respect to protocols, algorithms and Simulations. 


2017 ◽  
Vol 13 (05) ◽  
pp. 122 ◽  
Author(s):  
Bo Feng ◽  
Wei Tang ◽  
Guofa Guo

In wireless sensor networks, the nodes around the base station have higher energy consumption due to the forwarding task of all the detected data. In order to balance the energy consumption of the nodes around the base station, a reasonable and effective mechanism of node rotation dormancy is put forward. In this way, a large number of redundant nodes in the network are in a dormant state, so as to reduce the load of important nodes around the base station. The problems of the redundant nodes in the sensor network are analyzed, and a new method is proposed to distinguish the redundant nodes based on local Delaunay triangulation and multi node election dormancy mechanism. The experimental results showed that this method could effectively distinguish the redundant nodes in the network; at the same time, through the multi round election mechanism, parts of redundant nodes are made dormant. In summary, they can reduce the network energy consumption on the condition of guaranteeing the original coverage.


2017 ◽  
Vol 13 (04) ◽  
pp. 45 ◽  
Author(s):  
Liping LV

<p class="0abstract"><span lang="EN-US">Wireless sensor network is a new field of computer science and technology research. It has a very broad application prospects. In order to improve the network survival time, it is very important to design efficient energy-constrained routing protocols. In this paper, we studied the characteristics of wireless sensor networks, and analyzed the design criteria of sensor network routing algorithms. In view of the shortcomings of traditional algorithms, we proposed an energy-aware multi-path algorithm. When selecting a data transmission path, the energy-aware multi-path algorithm can avoid nodes with low energy levels. At the same time, it takes the remaining energy of the node and the number of hops as one of the measures of the path selection. The multi-path routing algorithm realized the low energy consumption of the data transmission path, thus effectively prolonging the network lifetime. Compared with the traditional algorithm, the results show that our method has high reliability and energy efficiency.</span></p>


2017 ◽  
Vol 13 (07) ◽  
pp. 36
Author(s):  
Yuxia Shen

<p><span style="font-size: medium;"><span style="font-family: 宋体;">In wireless sensor networks, for improving the time synchronization perfromance of online monitoring and application of ZigBee protocol, a scheme is designed. For this objective, first of all, the ZigBee protocol specification is summarized, a profound analysis of the hardware abstraction architecture of TinyOS operating system is made; the advantages of the ZigBee protocol compared with the traditional radio technology are comparatively analyzed. At the same time, the node design block diagram based on CC2430 and related development system is provided. In the TinyOS2.x operating system, we analyze CC2430 application program abstract architecture, and on this basis, give the realization process of program design. The research results showed that we achieve an on-line monitoring system based on ZigBee protocol, which has realistic significance of applying ZigBee protocol in wireless sensor network of electrical equipment online monitoring. Based on the above research, it is concluded that the online monitoring system can collect the temperature parameters of the monitored object in real time that it can be widely applied in wireless sensor networks.</span></span></p>


Author(s):  
Audrey NANGUE ◽  
◽  
Elie FUTE TAGNE ◽  
Emmanuel TONYE

The success of the mission assigned to a Wireless Sensor Network (WSN) depends heavily on the cooperation between the nodes of this network. Indeed, given the vulnerability of wireless sensor networks to attack, some entities may engage in malicious behavior aimed at undermining the proper functioning of the network. As a result, the selection of reliable nodes for task execution becomes a necessity for the network. To improve the cooperation and security of wireless sensor networks, the use of Trust Management Systems (TMS) is increasingly recommended due to their low resource consumption. The various existing trust management systems differ in their methods of estimating trust value. The existing ones are very rigid and not very accurate. In this paper, we propose a robust and accurate method (RATES) to compute direct and indirect trust between the network nodes. In RATES model, to compute the direct trust, we improve the Bayesian formula by applying the chaining of trust values, a local reward, a local penalty and a flexible global penalty based on the variation of successful interactions, failures and misbehaviors frequency. RATES thus manages to obtain a direct trust value that is accurate and representative of the node behavior in the network. In addition, we introduce the establishment of a simple confidence interval to filter out biased recommendations sent by malicious nodes to disrupt the estimation of a node's indirect trust. Mathematical theoretical analysis and evaluation of the simulation results show the best performance of our approach for detecting on-off attacks, bad-mouthing attacks and persistent attacks compared to the other existing approaches.


Author(s):  
Smriti Joshi ◽  
Anant Kr. Jayswal

Energy efficiency is the kernel issue in the designing of wireless sensor network(WSN) MAC protocols. Energy efficiency is a major consideration while designing wireless sensor network nodes. Most sensor network applications require energy autonomy for the complete lifetime of the node, which may span up to several years. These energy constraints require that the system be built such that Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. Each component consumes minimum possible power, ensure the average successful transmission rate, decrease the data packet average waiting time, and reduce the average energy consumption. Influencing by the design principles of traditional layered protocol stack, current MAC protocol designing for wireless sensor networks (WSN) seldom takes load balance into consideration, which greatly restricts WSN lifetime. As a novel Forwarding Election-based MAC protocol, is presented to prolong WSN lifetime by means of improving energy efficiency and enhancing load balance.


The emergence of sensor networks as one of the dominant technology trends in the coming decades has posed numerous unique challenges on their security to researchers. These networks are likely to be composed of thousands of tiny sensor nodes, which are low-cost devices equipped with limited memory, processing, radio, and in many cases, without access to renewable energy resources. While the set of challenges in sensor networks are diverse, we focus on security of Wireless Sensor Network in this paper. First, we propose some of the security goal for Wireless Sensor Network. To perform any task in WSN, the goal is to ensure the best possible utilization of sensor resources so that the network could be kept functional as long as possible. In contrast to this crucial objective of sensor network management, a Denial of Service (DoS) attack targets to degrade the efficient use of network resources and disrupts the essential services in the network. DoS attack could be considered as one of th


Sign in / Sign up

Export Citation Format

Share Document