scholarly journals Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation

Epigenetics ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. 135-141 ◽  
Author(s):  
Shusuke Numata ◽  
Kazuo Ishii ◽  
Atsushi Tajima ◽  
Jun-ichi Iga ◽  
Makoto Kinoshita ◽  
...  
Genes ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 178
Author(s):  
Yinping Xie ◽  
Ling Xiao ◽  
Lijuan Chen ◽  
Yage Zheng ◽  
Caixia Zhang ◽  
...  

Major depressive disorder (MDD) is a mental illness with high incidence and complex etiology, that poses a serious threat to human health and increases the socioeconomic burden. Currently, high-accuracy biomarkers for MDD diagnosis are urgently needed. This paper aims to identify novel blood-based diagnostic biomarkers for MDD. Whole blood DNA methylation data and gene expression data from the Gene Expression Omnibus database are downloaded. Then, differentially expressed/methylated genes (DEGs/DMGs) are identified. In addition, we made a systematic analysis of the DNA methylation on 5′-C-phosphate-G-3′ (CpGs) in all of the gene regions, as well as different gene regions, and then we defined a “dominant” region. Subsequently, integrated analysis is employed to identify the robust MDD-related blood biomarkers. Finally, a gene expression classifier and a methylation classifier are constructed using the random forest algorithm and the leave-one-out cross-validation method. Our results demonstrate that DEGs are mainly involved in the inflammatory response-associated pathways, while DMGs are primarily concentrated in the neurodevelopment- and neuroplasticity-associated pathways. Our integrated analysis identified 46 hypo-methylated and up-regulated (hypo-up) genes and 71 hyper-methylated and down-regulated (hyper-down) genes. One gene expression classifier and two DNA methylation classifiers, based on the CpGs in all of the regions or in the dominant regions are constructed. The gene expression classifier possessed the best predictive ability, followed by the DNA methylation classifiers, based on the CpGs in both the dominant regions and all of the regions. In summary, the integrated analysis of DNA methylation and gene expression has identified 46 hypo-up genes and 71 hyper-down genes, which could be used as diagnostic biomarkers for MDD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Jiaqi Zhou ◽  
Miao Li ◽  
Xueying Wang ◽  
Yuwen He ◽  
Yan Xia ◽  
...  

Pharmacotherapy is the most common treatment for schizophrenia (SCZ), bipolar disorder (BD), and major depressive disorder (MDD). Pharmacogenetic studies have achieved results with limited clinical utility. DNA methylation (DNAm), an epigenetic modification, has been proposed to be involved in both the pathology and drug treatment of these disorders. Emerging data indicates that DNAm could be used as a predictor of drug response for psychiatric disorders. In this study, we performed a systematic review to evaluate the reproducibility of published changes of drug response-related DNAm in SCZ, BD and MDD. A total of 37 publications were included. Since the studies involved patients of different treatment stages, we partitioned them into three groups based on their primary focuses: (1) medication-induced DNAm changes (n = 8); (2) the relationship between DNAm and clinical improvement (n = 24); and (3) comparison of DNAm status across different medications (n = 14). We found that only BDNF was consistent with the DNAm changes detected in four independent studies for MDD. It was positively correlated with clinical improvement in MDD. To develop better predictive DNAm factors for drug response, we also discussed future research strategies, including experimental, analytical procedures and statistical criteria. Our review shows promising possibilities for using BDNF DNAm as a predictor of antidepressant treatment response for MDD, while more pharmacoepigenetic studies are needed for treatments of various diseases. Future research should take advantage of a system-wide analysis with a strict and standard analytical procedure.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Kathryn L. Humphreys ◽  
Sarah R. Moore ◽  
Elena Goetz Davis ◽  
Julie L. MacIsaac ◽  
David T. S. Lin ◽  
...  

Abstract The stress response system is disrupted in individuals with major depressive disorder (MDD) as well as in those at elevated risk for developing MDD. We examined whether DNA methylation (DNAm) levels of CpG sites within HPA-axis genes predict the onset of MDD. Seventy-seven girls, approximately half (n = 37) of whom were at familial risk for MDD, were followed longitudinally. Saliva samples were taken in adolescence (M age = 13.06 years [SD = 1.52]) when participants had no current or past MDD diagnosis. Diagnostic interviews were administered approximately every 18 months until the first onset of MDD or early adulthood (M age of last follow-up = 19.23 years [SD = 2.69]). We quantified DNAm in saliva samples using the Illumina EPIC chip and examined CpG sites within six key HPA-axis genes (NR3C1, NR3C2, CRH, CRHR1, CRHR2, FKBP5) alongside 59 genotypes for tagging SNPs capturing cis genetic variability. DNAm levels within CpG sites in NR3C1, CRH, CRHR1, and CRHR2 were associated with risk for MDD across adolescence and young adulthood. To rule out the possibility that findings were merely due to the contribution of genetic variability, we re-analyzed the data controlling for cis genetic variation within these candidate genes. Importantly, methylation levels in these CpG sites continued to significantly predict the onset of MDD, suggesting that variation in the epigenome, independent of proximal genetic variants, prospectively predicts the onset of MDD. These findings suggest that variation in the HPA axis at the level of the methylome may predict the development of MDD.


2018 ◽  
Vol 19 (10) ◽  
pp. 3026 ◽  
Author(s):  
Charanraj Goud Alladi ◽  
Bruno Etain ◽  
Frank Bellivier ◽  
Cynthia Marie-Claire

So far, genetic studies of treatment response in schizophrenia, bipolar disorder, and major depression have returned results with limited clinical utility. A gene × environment interplay has been proposed as a factor influencing not only pathophysiology but also the treatment response. Therefore, epigenetics has emerged as a major field of research to study the treatment of these three disorders. Among the epigenetic marks that can modify gene expression, DNA methylation is the best studied. We performed a systematic search (PubMed) following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA guidelines for preclinical and clinical studies focused on genome-wide and gene-specific DNA methylation in the context of schizophrenia, bipolar disorders, and major depressive disorder. Out of the 112 studies initially identified, we selected 31 studies among them, with an emphasis on responses to the gold standard treatments in each disorder. Modulations of DNA methylation levels at specific CpG sites have been documented for all classes of treatments (antipsychotics, mood stabilizers, and antidepressants). The heterogeneity of the models and methodologies used complicate the interpretation of results. Although few studies in each disorder have assessed the potential of DNA methylation as biomarkers of treatment response, data support this hypothesis for antipsychotics, mood stabilizers and antidepressants.


2017 ◽  
Vol 75 (2) ◽  
pp. 81-88 ◽  
Author(s):  
Naohiro Takeuchi ◽  
Shinpei Nonen ◽  
Masaki Kato ◽  
Masataka Wakeno ◽  
Yoshiteru Takekita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document