Control of wind/wave-induced vibrations of jacket-type offshore wind turbines through tuned liquid column gas dampers

2015 ◽  
Vol 12 (3) ◽  
pp. 312-326 ◽  
Author(s):  
Reza Dezvareh ◽  
Khosrow Bargi ◽  
Seyed Amin Mousavi
Author(s):  
Daniel Milano ◽  
Christophe Peyrard ◽  
Matteo Capaldo

Abstract The numerical fatigue analysis of floating offshore wind turbines (FOWTs) must account for the environmental loading over a typical design life of 25 years, and the stochastic nature of wind and waves is represented by design load cases (DLCs). In this statistical approach, combinations of wind speeds and directions are associated with different sea states, commonly defined via simplified wave spectra (Pierson-Moskowitz, JONSWAP), and their probability of occurrence is identified based on past observations. However, little is known about the difference between discretizing the wind/wave direction bins into (e.g.) 10deg bins rather than 30deg bins, and the impact it has on FOWT analyses. In addition, there is an interest in identifying the parameters that best represent real sea states (significant wave height, peak period) and wind fields (profile, turbulence) in lumped load cases. In this context, the aim of this work is to better understand the uncertainties associated to wind/wave direction bin size and to the use of metocean parameters as opposed to real wind and sea state conditions. A computational model was developed in order to couple offshore wind turbine models with realistic numerical metocean models, referred to as numerical prototype due to the highly realistic wind/wave conditions in which it operates. This method allows the virtual installation of FOWTs anywhere within a considered spatial domain (e.g. the Mediterranean Sea or the North Sea) and their behaviour to be evaluated in measured wind and modelled wave conditions. The work presented in this paper compares the long-term dynamic behaviour of a tension-leg platform (TLP) FOWT design subject to the numerical prototype and to lumped load cases with different direction bin sizes. Different approaches to representing the wind filed are also investigated, and the modelling choices that have the greatest impact on the fidelity of lumped load cases are identified. The fatigue analysis suggests that 30deg direction bins are sufficient to reliably represent long-term wind/wave conditions, while the use of a constant surface roughness length (as suggested by the IEC standards) seems to significantly overestimate the cumulated damage on the tower of the FOWT.


Author(s):  
Jan-Tore H. Horn ◽  
Jørgen R. Krokstad ◽  
Jørgen Amdahl

The design process for offshore wind turbines includes a fatigue life evaluation of the structure with the relevant environmental conditions at the specified wind farm location. Such analyses require long-term distributions of the environmental parameters including their correlation. In general, the significant wave height, wave peak period and mean wind speed are the most important parameters for describing offshore environmental conditions. However, due to the low side-to-side damping level of offshore bottom-fixed wind turbines, wave directions misaligned with the wind direction may excite low-damped vibrational modes. As a consequence, the accumulated fatigue damage in the wind turbine foundation may change, compared to collinear wind and waves. In the current work, an extension to the three-parameter environmental joint probability distribution is presented, with the resulting distribution being a function of the significant wave height, peak period of the total sea, mean wind speed and the wave directional offset compared to the mean wind heading i.e. the wind-wave misalignment. The sea states within a 1-year return period for Dogger Bank are presented, as well as the 10- and 50-year environmental contour lines and extreme wind-wave misalignment angles.


Author(s):  
Luigia Riefolo ◽  
Fernando del Jesus ◽  
Raúl Guanche García ◽  
Giuseppe Roberto Tomasicchio ◽  
Daniela Pantusa

The design methodology for mooring systems for a spar buoy wind turbine considers the influence of extreme events and wind/wave misalignments occurring in its lifetime. Therefore, the variety of wind and wave directions affects over the seakeeping and as a result the evaluation of the maxima loads acting on the spar-buoy wind turbine. In the present paper, the importance of wind/wave misalignments on the dynamic response of spar-type floating wind turbine [1] is investigated. Based on standards, International Electrotechnical Commission IEC and Det Norske Veritas DNV the design of position moorings should be carried out under extreme wind/wave loads, taking into account their misalignments with respect to the structure. In particular, DNV standard, in ‘Position mooring’ recommendations, specifies in the load cases definition, if site specific data is not available, to consider non-collinear environment to have wave towards the unit’s bow (0°) and wind 30° relative to the waves. In IEC standards, the misalignment of the wind and wave directions shall be considered to design offshore wind turbines and calculate the loads acting on the support structure. Ultimate Limit State (ULS) analyses of the OC3-Hywind spar buoy wind turbine are conducted through FAST code, a certified nonlinear aero-hydro-servo-elastic simulation tool by the National Renewable Energy Laboratory’s (NREL’s). This software was developed for use in the International Energy Agency (IEA) Offshore Code Comparison Collaborative (OC3) project, and supports NREL’s offshore 5-MW baseline turbine. In order to assess the effects of misaligned wind and wave, different wind directions are chosen, maintaining the wave loads perpendicular to the structure. Stochastic, full-fields, turbulence simulator Turbsim is used to simulate the 1-h turbulent wind field. The scope of the work is to investigate the effects of wind/wave misalignments on the station-keeping system of spar buoy wind turbine. Results are presented in terms of global maxima determined through mean up-crossing with moving average, which, then, are modelled by a Weibull distribution. Finally, extreme values are estimated depending on global maxima and fitted on Gumbel distribution. The Most Probable Maximum value of mooring line tensions is found to be influenced by the wind/wave misalignments. The present paper is organized as follows. Section ‘Introduction’, based on a literature study, gives useful information on the previous studies conducted on the wind/wave misalignments effects of floating offshore wind turbines. Section ‘Methodology’ describes the applied methodology and presents the spar buoy wind turbine, the used numerical model and the selected environmental conditions. Results and the corresponding discussion are given in Section ‘Results and discussion’ for each load case corresponding to the codirectional and misaligned wind and wave loads. Results are presented and discussed in time and frequency domains. Finally, in Section ‘Conclusion’ some conclusions are drawn.


2018 ◽  
Vol 8 (11) ◽  
pp. 2314 ◽  
Author(s):  
Yin Zhang ◽  
Bumsuk Kim

Accurate prediction of the time-dependent system dynamic responses of floating offshore wind turbines (FOWTs) under aero-hydro-coupled conditions is a challenge. This paper presents a numerical modeling tool using commercial computational fluid dynamics software, STAR-CCM+(V12.02.010), to perform a fully coupled dynamic analysis of the DeepCwind semi-submersible floating platform with the National Renewable Engineering Lab (NREL) 5-MW baseline wind turbine model under combined wind–wave excitation environment conditions. Free-decay tests for rigid-body degrees of freedom (DOF) in still water and hydrodynamic tests for a regular wave are performed to validate the numerical model by inputting gross system parameters supported in the Offshore Code Comparison, Collaboration, Continued, with Correlations (OC5) project. A full-configuration FOWT simulation, with the simultaneous motion of the rotating blade due to 6-DOF platform dynamics, was performed. A relatively heavy load on the hub and blade was observed for the FOWT compared with the onshore wind turbine, leading to a 7.8% increase in the thrust curve; a 10% decrease in the power curve was also observed for the floating-type turbines, which could be attributed to the smaller project area and relative wind speed required for the rotor to receive wind power when the platform pitches. Finally, the tower-blade interference effects, blade-tip vortices, turbulent wakes, and shedding vortices in the fluid domain with relatively complex unsteady flow conditions were observed and investigated in detail.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1867 ◽  
Author(s):  
Amrit Shankar Verma ◽  
Zhiyu Jiang ◽  
Zhengru Ren ◽  
Zhen Gao ◽  
Nils Petter Vedvik

Installation of wind-turbine blades on monopile-type offshore wind turbines is a demanding task. Typically, a jack-up crane vessel is used, and blades are individually lifted from the vessel deck and docked with the preinstalled hub. During the process of mating, large relative motions are developed between the hub and root due to combined effects of wind-generated blade-root responses and wave-generated monopile vibrations. This can cause impact loads at the blade root and induce severe damages at the blade-root connection. Such events are highly likely to cause the failure of the mating task, while affecting the subsequent activities, and thus require competent planning. The purpose of this paper is to present a probabilistic response-based methodology for estimating the allowable sea states for planning a wind-turbine blade-mating task, considering impact risks with the hub as the hazardous event. A case study is presented where the installation system consisting of blade-lift and monopile system are modelled using multibody formulations. Time-domain analyses are carried out for various sea states, and impact velocities between root and hub are analyzed. Finally, an extreme value analysis using the Gumbel fitting of response parameters is performed and limiting sea state curves are obtained by comparing characteristic extreme responses with allowable values. It is found that the limiting sea states for blade-root mating tasks are low for aligned wind–wave conditions, and further increase with increased wind–wave misalignment. The results of the study also show that the parameter T p is essential for estimating limiting sea states given that this parameter significantly influences monopile vibrations during the blade-root mating task. Overall, the findings of the study can be used for a safer and more cost-effective mating of wind-turbine blades.


Sign in / Sign up

Export Citation Format

Share Document