Seaweeds of South Andaman: diversity, distribution, biochemical characterization and fatty acid profiling of some selected species

2022 ◽  
pp. 1-16
Author(s):  
R. Karunakumari ◽  
N. V. Vinithkumar ◽  
Reena Singh ◽  
D. Magesh Peter ◽  
G. Dharani
PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0241568
Author(s):  
Sohail ◽  
Khalid Kamran ◽  
Birgit Kemmerling ◽  
Meshal Shutaywi ◽  
Zia ur Rehman Mashwani

The use of nanomaterials in agriculture is a current need and could be helpful in overcoming food security risks. Brassica napus L. is the third most important crop for edible oil, having double low unsaturated fatty acids. In the present study, we investigated the effects of green synthesized Zn NPs on biochemical effects, antioxidant enzymes, nutritional quality parameters and on the fatty acid profile of rapeseed (B. napus). Plant-mediated synthesis of zinc nanoparticles (Zn NPs) was carried out using Mentha arvensis L. leaf extract followed by characterization through ultraviolet–visible spectroscopy (UV-vis), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-Ray (EDX), and X-Ray diffraction (XRD). NPs exhibited irregular shapes ranging in size from 30–70 nm and EDX analysis confirmed 96.08% of Zn in the sample. The investigated biochemical characterization (protein content, proline content, total soluble sugar (TSS), total flavonoid content (TFC), and total phenolic content (TPC) showed a substantial change on exposure to Zn NPs. A dose-dependent gradual increase was observed in the antioxidant enzymes, superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). Oil and moisture contents dropped significantly from the control level in the rapeseed (B. napus) varieties. However, different trends in nutritional (Zn, Na+, K+) and fatty acid profiling of B. napus have been noted. This study demonstrates that Zn NPs have the potential to improve the biochemical, nutritional, antioxidant enzymes, and fatty acid profile of B. napus varieties.


1976 ◽  
Vol 22 (7) ◽  
pp. 1007-1012 ◽  
Author(s):  
Susanne M. Pearce

Previous studies on this cortexless mutant of Bacillus cereus var. alesti indicated that the forespore membrane was the site of the biochemical lesion. This hypothesis is supported by the results presented here: fatty acid composition of sporulating cells of the mutant is altered, while in vegetative cells it is comparable to the parent; soluble precursors of peptidoglycan synthesis are accumulated in the mutant, at the time of cortex formation; homogenates of the mutant prepared at the time of cortex formation are unable to incorporate tritiated diaminopimelic acid into peptidoglycan, while homogenates of cells forming germ cell wall do so to an extent comparable to that of the parent; lipid-linked intermediates are formed by the mutant as in the parent. Apparently the mutant is unable either to transfer disaccharide penta-peptide units from the carrier lipid to the growing peptidoglycan acceptor, or to transport lipid-linked intermediates across the forespore membrane.


2018 ◽  
Vol 83 ◽  
pp. 52-57 ◽  
Author(s):  
Mihaela Tociu ◽  
Maria-Cristina Todasca ◽  
Aurelia Bratu ◽  
Mihaela Mihalache ◽  
Fulvia Manolache

2012 ◽  
Vol 29 (3) ◽  
pp. 332-344 ◽  
Author(s):  
Simrat Kaur ◽  
Manas Sarkar ◽  
Ravi B. Srivastava ◽  
Hemanta K. Gogoi ◽  
Mohan C. Kalita

Sign in / Sign up

Export Citation Format

Share Document