scholarly journals Are we seeing a resurgence in the use of natural products for new drug discovery?

2019 ◽  
Vol 14 (5) ◽  
pp. 417-420 ◽  
Author(s):  
Feng Li ◽  
Yongli Wang ◽  
Dapeng Li ◽  
Yilun Chen ◽  
Q. Ping Dou
MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 867-879 ◽  
Author(s):  
Urmila Maitra ◽  
Lukasz Ciesla

The review provides an overview of discovery of new drug leads from natural extracts usingDrosophilaas a screening platform to evaluate the therapeutic potential of phytochemicals against Parkinson's disease.


2022 ◽  
Vol 27 ◽  
pp. 2515690X2110536
Author(s):  
Samaneh Soleymani ◽  
Ayeh Naghizadeh ◽  
Mehrdad Karimi ◽  
Azadeh Zarei ◽  
Raefeh Mardi ◽  
...  

The coronavirus disease-2019 (COVID-19) pandemic started in early 2020 with the outbreak of a highly pathogenic human coronavirus. The world is facing a challenge and there is a pressing need for efficient drugs. Plants and natural compounds are a proven rich resource for new drug discovery. Considering the potential of natural products to manage the pandemic, this article was designed to provide an inclusive map of the stages and pathogenetic mechanisms for effective natural products on COVID-19. New drug discovery for the COVID-19 pandemic can encompass both prevention and disease management strategies. Preventive mechanisms that may be considered include boosting the immune response and hand hygiene in the preexposure phase; and blocking of virus binding and entry in the postexposure phase. Potential therapeutic target mechanisms include virus-directed therapies and host-directed therapies. Several medicinal plants and natural products, such as Withania somnifera (L.) Dunal and propolis for prevention; Tanacetum parthenium (L.) for treatment; and Ammoides verticillata (Desf.) Briq and Nigella sativa L. for both prevention and treatment have been found effective and are good targets for future research. The examples of phytochemical compounds that may be effective include aloin and terpenes as anti-septics; isothymol, dithymoquinone, and glycyrrhizin as inhibitors of virus binding and entry; glycyrrhizin, and berberine as replication suppressants; ginsenoside Rg1 and parthenolide as immunomodulators; and eriocitrin, rhoifolin, hesperidin, naringin, rutin, and veronicastroside as anti-complements. Recognizing different mechanisms of fighting against this virus can lead to a more systematic approach in finding natural products and medicinal plants for COVID-19 prevention and treatment.


Molecules ◽  
2020 ◽  
Vol 25 (6) ◽  
pp. 1308
Author(s):  
Alejandro Manchado ◽  
Victoria Elena Ramos ◽  
David Díez ◽  
Narciso M. Garrido

The asymmetric synthesis of a compound with the cyclopentan[c]pyran core of iridoid natural products in four steps and 40% overall yield is reported. Our methodology includes a one-pot tandem domino reaction which provides a trisubstituted cyclopentane with five new completely determined stereocenters, which were determined through 2D homo and heteronuclear NMR and n.O.e. experiments on different compounds specially designed for this purpose, such as a dioxane obtained from a diol. Due to their pharmaceutical properties, including sedative, analgesic, anti-inflammatory, CNS depressor or anti-conceptive effects, this methodology to produce the abovementioned iridoid derivatives, is an interesting strategy in terms of new drug discovery as well as pharmaceutical development.


2018 ◽  
Vol 25 (20) ◽  
pp. 2304-2328 ◽  
Author(s):  
Lishu Wang ◽  
Jungfeng Wang ◽  
Juan Liu ◽  
Yonghong Liu

Due to the importance of nature as a source of new drug candidates, the purpose of this article is to emphasize the marine natural products, which exhibit antitubercular activity, published between January 2000 and May 2016, with 138 quotations to 250 compounds obtained from marine resources. These metabolites are organized by chemical constitution and named as simple alkyl lipids derivatives, aromatics derivatives, peptides, alkaloids, terpenoids, steroids, macrolides, and polycyclic polyketides.


2019 ◽  
Vol 22 (8) ◽  
pp. 509-520
Author(s):  
Cauê B. Scarim ◽  
Chung M. Chin

Background: In recent years, there has been an improvement in the in vitro and in vivo methodology for the screening of anti-chagasic compounds. Millions of compounds can now have their activity evaluated (in large compound libraries) by means of high throughput in vitro screening assays. Objective: Current approaches to drug discovery for Chagas disease. Method: This review article examines the contribution of these methodological advances in medicinal chemistry in the last four years, focusing on Trypanosoma cruzi infection, obtained from the PubMed, Web of Science, and Scopus databases. Results: Here, we have shown that the promise is increasing each year for more lead compounds for the development of a new drug against Chagas disease. Conclusion: There is increased optimism among those working with the objective to find new drug candidates for optimal treatments against Chagas disease.


Sign in / Sign up

Export Citation Format

Share Document