scholarly journals UsingDrosophilaas a platform for drug discovery from natural products in Parkinson's disease

MedChemComm ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 867-879 ◽  
Author(s):  
Urmila Maitra ◽  
Lukasz Ciesla

The review provides an overview of discovery of new drug leads from natural extracts usingDrosophilaas a screening platform to evaluate the therapeutic potential of phytochemicals against Parkinson's disease.

Author(s):  
M.M. Essa ◽  
N. Braidy ◽  
W. Bridge ◽  
S. Subash ◽  
T. Manivasagam ◽  
...  

This review examines evidence of plant-derived natural products and their constituents that have been shown to slow down or reverse the underlying neuronal degeneration observed in Parkinson’s disease (PD), with a focus on their effect on the modulation of dopaminergic neurotransission levels and motor function. During the last decade, there have been over 140 studies published that have investigated the anti-PD therapeutic potential of herbs, fruits, vegetables and spices, ornamental and parasitic plants, and fungi. Empirical evidence implicates phytochemicals may play a role in the prevention and mitigation of some of the intractable signs and symptoms of PD. The anti-PD effects exhibited by these natural products are considered to be due to their ability to modulate; reactive oxygen species production, neuroinflammation, dopamine production, excitotoxicity, metal homeostasis, mitochondrial function, and cellular signaling pathways, which are all disrupted in the PD brain. However, the precise neuroprotective mechanism of action of natural products for PD remains unclear. Research is necessary to further elucidate the mechanisms by which these compounds are efficacious in attenuating PD or controlling PD-related symptoms.


2019 ◽  
Vol 26 (28) ◽  
pp. 5340-5362 ◽  
Author(s):  
Xin Chen ◽  
Giuseppe Gumina ◽  
Kristopher G. Virga

:As a long-term degenerative disorder of the central nervous system that mostly affects older people, Parkinson’s disease is a growing health threat to our ever-aging population. Despite remarkable advances in our understanding of this disease, all therapeutics currently available only act to improve symptoms but cannot stop the disease progression. Therefore, it is essential that more effective drug discovery methods and approaches are developed, validated, and used for the discovery of disease-modifying treatments for Parkinson’s disease. Drug repurposing, also known as drug repositioning, or the process of finding new uses for existing or abandoned pharmaceuticals, has been recognized as a cost-effective and timeefficient way to develop new drugs, being equally promising as de novo drug discovery in the field of neurodegeneration and, more specifically for Parkinson’s disease. The availability of several established libraries of clinical drugs and fast evolvement in disease biology, genomics and bioinformatics has stimulated the momentums of both in silico and activity-based drug repurposing. With the successful clinical introduction of several repurposed drugs for Parkinson’s disease, drug repurposing has now become a robust alternative approach to the discovery and development of novel drugs for this disease. In this review, recent advances in drug repurposing for Parkinson’s disease will be discussed.


Author(s):  
Junmei Shang ◽  
Shurong Ma ◽  
Caixia Zang ◽  
Xiuqi Bao ◽  
Yan Wang ◽  
...  

2021 ◽  
Vol 22 (2) ◽  
pp. 654
Author(s):  
Ka Young Kim ◽  
Keun-A Chang

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons in the substantia nigra. Several treatments for PD have focused on the management of physical symptoms using dopaminergic agents. However, these treatments induce various adverse effects, including hallucinations and cognitive impairment, owing to non-targeted brain delivery, while alleviating motor symptoms. Furthermore, these therapies are not considered ultimate cures owing to limited brain self-repair and regeneration abilities. In the present study, we aimed to investigate the therapeutic potential of human adipose-derived stem cells (hASCs) using magnetic nanoparticles in a 6-hydroxydopamine (6-OHDA)-induced PD mouse model. We used the Maestro imaging system and magnetic resonance imaging (MRI) for in vivo tracking after transplantation of magnetic nanoparticle-loaded hASCs to the PD mouse model. The Maestro imaging system revealed strong hASCs signals in the brains of PD model mice. In particular, MRI revealed hASCs distribution in the substantia nigra of hASCs-injected PD mice. Behavioral evaluations, including apomorphine-induced rotation and rotarod performance, were significantly recovered in hASCs-injected 6-OHDA induced PD mice when compared with saline-treated counterparts. Herein, we investigated whether hASCs transplantation using magnetic nanoparticles recovered motor functions through targeted brain distribution in a 6-OHDA induced PD mice. These results indicate that magnetic nanoparticle-based hASCs transplantation could be a potential therapeutic strategy in PD.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jianshe Wei ◽  
Gilbert Ho ◽  
Yoshiki Takamatsu ◽  
Eliezer Masliah ◽  
Makoto Hashimoto

The majority of Parkinson’s disease (PD) is sporadic in elderly and is characterized by α-synuclein (αS) aggregation and other alterations involving mitochondria, ubiquitin-proteasome, and autophagy. The remaining are familial PD associated with gene mutations of either autosomal dominant or recessive inheritances. However, the former ones are similar to sporadic PD, and the latter ones are accompanied by impaired mitophagy during the reproductive stage. Since no radical therapies are available for PD, the objective of this paper is to discuss a mechanistic role for amyloidogenic evolvability, a putative physiological function of αS, among PD subtypes, and the potential relevance to therapy. Presumably, αS evolvability might benefit familial PD due to autosomal dominant genes and also sporadic PD during reproduction, which may manifest as neurodegenerative diseases through antagonistic pleiotropy mechanism in aging. Indeed, there are some reports describing that αS prevents apoptosis and mitochondrial alteration under the oxidative stress conditions, notwithstanding myriads of papers on the neuropathology of αS. Importantly, β-synuclein (βS), the nonamyloidogenic homologue of αS, might buffer against evolvability of αS protofibrils associated with neurotoxicity. Finally, it is intriguing to predict that increased αS evolvability through suppression of βS expression might protect against autosomal recessive PD. Collectively, further studies are warranted to better understand αS evolvability in PD pathogenesis, leading to rational therapy development.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Sicong Li ◽  
Xu Sun ◽  
Lei Bi ◽  
Yujia Tong ◽  
Xin Liu

Parkinson’s disease (PD) is a common neurodegenerative disease in middle-aged and older adults. Abnormal proteins such as α-synuclein are essential factors in PD’s pathogenesis. Autophagy is the main participant in the clearance of abnormal proteins. The overactive or low function of autophagy leads to autophagy stress. Not only is it difficult to clear abnormal proteins but also it can cause damage to neurons. In this article, the effects of natural products ingredients, such as salidroside, paeoniflorin, curcumin, resveratrol, corynoxine, and baicalein, on regulating autophagy and protecting neurons were discussed in detail to provide a reference for the research and development of drugs for the treatment of PD.


Sign in / Sign up

Export Citation Format

Share Document