scholarly journals Social neuroscience is more than the study of the human brain: The legacy of John Cacioppo

2021 ◽  
Vol 16 (1) ◽  
pp. 1-5
Author(s):  
Eric J. Vanman ◽  
Arvid Kappas ◽  
Tiffany A. Ito
2017 ◽  
pp. 304-310
Author(s):  
Riitta Hari ◽  
Aina Puce

This chapter summarizes some relative advantages and disadvantages of MEG and EEG, most of which have been previously elaborated. MEG and EEG are the two sides of the same coin and provide complementary information about the human brain’s neurodynamics. The combined use of MEG or EEG together and with other noninvasive methods used to study human brain function is advocated to be important for future research in systems and cognitive/social neuroscience. This chapter also examines combined use and interpretation of MEG/EEG with MRI/fMRI, and performing EEG recordings during non-invasive brain stimulation.


2012 ◽  
Vol 25 (3) ◽  
pp. 401-424 ◽  
Author(s):  
Allan Young

ArgumentNeuroscience research has created multiple versions of the human brain. The “social brain” is one version and it is the subject of this paper. Most image-based research in the field of social neuroscience is task-driven: the brain is asked to respond to a cognitive (perceptual) stimulus. The tasks are derived from theories, operational models, and back-stories now circulating in social neuroscience. The social brain comes with a distinctive back-story, an evolutionary history organized around three, interconnected themes: mind-reading, empathy, and the emergence of self-consciousness. This paper focuses on how empathy has been incorporated into the social brain and redefined via parallel research streams, employing a shared, imaging technology. The concluding section describes how these developments can be understood as signaling the emergence of a new version of human nature and the unconscious. My argument is not that empathy in the social brain is a myth, but rather that it is served by a myth consonant with the canons of science.


Author(s):  
Elisa C Baek ◽  
Mason A Porter ◽  
Carolyn Parkinson

Abstract Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to advance knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual’s social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementations of the concepts that we discuss. We conclude by highlighting a broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.


2019 ◽  
Author(s):  
Elisa Baek ◽  
Mason A. Porter ◽  
Carolyn Parkinson

Although social neuroscience is concerned with understanding how the brain interacts with its social environment, prevailing research in the field has primarily considered the human brain in isolation, deprived of its rich social context. Emerging work in social neuroscience that leverages tools from network analysis has begun to pursue this issue, advancing knowledge of how the human brain influences and is influenced by the structures of its social environment. In this paper, we provide an overview of key theory and methods in network analysis (especially for social systems) as an introduction for social neuroscientists who are interested in relating individual cognition to the structures of an individual's social environments. We also highlight some exciting new work as examples of how to productively use these tools to investigate questions of relevance to social neuroscientists. We include tutorials to help with practical implementation of the concepts that we discuss. We conclude by highlighting the broad range of exciting research opportunities for social neuroscientists who are interested in using network analysis to study social systems.


2016 ◽  
Vol 39 ◽  
Author(s):  
Giosuè Baggio ◽  
Carmelo M. Vicario

AbstractWe agree with Christiansen & Chater (C&C) that language processing and acquisition are tightly constrained by the limits of sensory and memory systems. However, the human brain supports a range of cognitive functions that mitigate the effects of information processing bottlenecks. The language system is partly organised around these moderating factors, not just around restrictions on storage and computation.


Author(s):  
K.S. Kosik ◽  
L.K. Duffy ◽  
S. Bakalis ◽  
C. Abraham ◽  
D.J. Selkoe

The major structural lesions of the human brain during aging and in Alzheimer disease (AD) are the neurofibrillary tangles (NFT) and the senile (neuritic) plaque. Although these fibrous alterations have been recognized by light microscopists for almost a century, detailed biochemical and morphological analysis of the lesions has been undertaken only recently. Because the intraneuronal deposits in the NFT and the plaque neurites and the extraneuronal amyloid cores of the plaques have a filamentous ultrastructure, the neuronal cytoskeleton has played a prominent role in most pathogenetic hypotheses.The approach of our laboratory toward elucidating the origin of plaques and tangles in AD has been two-fold: the use of analytical protein chemistry to purify and then characterize the pathological fibers comprising the tangles and plaques, and the use of certain monoclonal antibodies to neuronal cytoskeletal proteins that, despite high specificity, cross-react with NFT and thus implicate epitopes of these proteins as constituents of the tangles.


Author(s):  
C. S. Potter ◽  
C. D. Gregory ◽  
H. D. Morris ◽  
Z.-P. Liang ◽  
P. C. Lauterbur

Over the past few years, several laboratories have demonstrated that changes in local neuronal activity associated with human brain function can be detected by magnetic resonance imaging and spectroscopy. Using these methods, the effects of sensory and motor stimulation have been observed and cognitive studies have begun. These new methods promise to make possible even more rapid and extensive studies of brain organization and responses than those now in use, such as positron emission tomography.Human brain studies are enormously complex. Signal changes on the order of a few percent must be detected against the background of the complex 3D anatomy of the human brain. Today, most functional MR experiments are performed using several 2D slice images acquired at each time step or stimulation condition of the experimental protocol. It is generally believed that true 3D experiments must be performed for many cognitive experiments. To provide adequate resolution, this requires that data must be acquired faster and/or more efficiently to support 3D functional analysis.


Sign in / Sign up

Export Citation Format

Share Document