Transformational tools for next-generation plant ecology: manipulation of gene expression for the functional analysis of genes

2012 ◽  
Vol 5 (4) ◽  
pp. 485-490 ◽  
Author(s):  
Klaus Gase ◽  
Ian T. Baldwin
Catalysts ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 62
Author(s):  
Won-Yong Jeon ◽  
Seyoung Mun ◽  
Wei Beng Ng ◽  
Keunsoo Kang ◽  
Kyudong Han ◽  
...  

Enzymatic biofuel cells (EBFCs) have excellent potential as components in bioelectronic devices, especially as active biointerfaces to regulate stem cell behavior for regenerative medicine applications. However, it remains unclear to what extent EBFC-generated electrical stimulation can regulate the functional behavior of human adipose-derived mesenchymal stem cells (hAD-MSCs) at the morphological and gene expression levels. Herein, we investigated the effect of EBFC-generated electrical stimulation on hAD-MSC cell morphology and gene expression using next-generation RNA sequencing. We tested three different electrical currents, 127 ± 9, 248 ± 15, and 598 ± 75 nA/cm2, in mesenchymal stem cells. We performed transcriptome profiling to analyze the impact of EBFC-derived electrical current on gene expression using next generation sequencing (NGS). We also observed changes in cytoskeleton arrangement and analyzed gene expression that depends on the electrical stimulation. The electrical stimulation of EBFC changes cell morphology through cytoskeleton re-arrangement. In particular, the results of whole transcriptome NGS showed that specific gene clusters were up- or down-regulated depending on the magnitude of applied electrical current of EBFC. In conclusion, this study demonstrates that EBFC-generated electrical stimulation can influence the morphological and gene expression properties of stem cells; such capabilities can be useful for regenerative medicine applications such as bioelectronic devices.


PLoS ONE ◽  
2011 ◽  
Vol 6 (7) ◽  
pp. e22953 ◽  
Author(s):  
Stefan Siebert ◽  
Mark D. Robinson ◽  
Sophia C. Tintori ◽  
Freya Goetz ◽  
Rebecca R. Helm ◽  
...  

2011 ◽  
Vol 4 ◽  
pp. 311-319
Author(s):  
Agnieszka Żmieńko ◽  
Paulina Jackowiak ◽  
Marek Figlerowicz

2016 ◽  
Vol 15 (4) ◽  
Author(s):  
Y.F. Xu ◽  
X. Liang ◽  
Y.R. Chen ◽  
Y.F. Li ◽  
J.L. Yang

2017 ◽  
Author(s):  
Berta Vidal ◽  
Ulkar Aghayeva ◽  
Haosheng Sun ◽  
Chen Wang ◽  
Lori Glenwinkel ◽  
...  

ABSTRACTOne goal of modern day neuroscience is the establishment of molecular maps that assign unique features to individual neuron types. Such maps provide important starting points for neuron classification, for functional analysis and for developmental studies aimed at defining the molecular mechanisms of neuron identity acquisition and neuron identity diversification. In this resource paper, we describe a nervous system-wide map of the potential expression sites of 244 members of the largest gene family in the C. elegans genome, rhodopsin-like (class A) GPCR chemoreceptors, using classic gfp reporter gene technology. We cover representatives of all sequence families of chemoreceptors GPCRs, some of which were previously entirely uncharacterized. Most reporters are expressed in a very restricted number of cells, often just in single cells. We assign GPCR reporter expression to all but two of the 37 sensory neuron classes of the sex-shared, core nervous system. Some sensory neurons express a very small number of receptors, while others, particularly nociceptive neurons, co-express several dozen GPCR reporter genes. GPCR reporters are also expressed in a wide range of inter- and motorneurons, as well as nonneuronal cells, suggesting that GPCRs may constitute receptors not just for environmental signals, but also for internal cues. We observe only one notable, frequent association of coexpression patterns, namely in one nociceptive amphid (ASH) and two nociceptive phasmid sensory neurons (PHA, PHB). We identified GPCRs with sexually dimorphic expression and several GPCR reporters that are expressed in a left/right asymmetric manner. We identified a substantial degree of GPCR expression plasticity; particularly in the context of the environmentally-induced dauer diapause stage when one third of all tested GPCRs alter the cellular specificity of their expression within and outside the nervous system. Intriguingly, in a number of cases, the dauer-specific alterations of GPCR reporter expression in specific neuron classes are maintained during postdauer life and in some case new patterns are induced post-dauer, demonstrating that GPCR gene expression may serve as traits of life history. Taken together, our resource provides an entry point for functional studies and also offers a host of molecular markers for studying molecular patterning and plasticity of the nervous system.AUTHOR SUMMARYMaps of gene expression patterns in the nervous system provide an important resource for neuron classification, for functional analysis and for developmental studies that ask how different neurons acquire their unique identities. By analyzing transgenic gfp reporter strains, we describe here the expression pattern of 244 putative chemosensory receptor-encoding genes, which constitute the largest gene family in C.elegans. We show that, as expected, chemoreceptor expression is enriched in chemosensory neurons but it is also expressed in a wide range of interneurons, motorneurons, as well as non-neuronal cells, suggesting that putative chemosensory receptors may not just sense environmental signals but also internal cues. We find that each chemoreceptor is expressed in a few neuron types, often just one, but each neuron type can express a large number of chemoreceptors. Interestingly, we uncovered that chemoreceptor expression is remarkably plastic, particularly in the context of the environmentally-induced dauer diapause stage. Taken together, this molecular atlas of chemosensory receptors provides an entry point for functional studies and offers a host of markers for studying neuronal patterning and plasticity.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1638
Author(s):  
Seong-Min Kim ◽  
Yeong Deuk Jo ◽  
Jae-In Chun ◽  
Jin-Baek Kim ◽  
Jin-Ho Kang

Compared to the studies on acute irradiation of seeds, fewer studies have reported on the chronic irradiation of seedlings, especially in fruit-bearing vegetables. We examined the effects of chronic gamma irradiation on tomato (Solanum lycopersicum ‘Micro-Tom’) seedlings exposed to gamma rays (50, 100, 150, and 200 Gy) for 4 weeks. As the total dose of gamma rays increased, leaf length, trichome density, and seed number were reduced in the irradiated seedlings (M1). Additionally, a change in fruit shape was observed. Chronic gamma irradiation reduced the expression of two trichome-related genes and affected the expression levels of 11 reactive oxygen species (ROS)-related genes. We examined the transmittance of these effects using M2 plants. The trichome density and fruit shape were similar between M2 and control plants; however, a reduction in leaf length and seed number was detected in M2 plants. Interestingly, changes in the expression of four ROS-related genes (ZAT10, Mn-SOD, POD3, and RBOH1) found in M1 were detected in M2 plants. Thus, the changes in phenotype and gene expression induced by chronic gamma irradiation were transmitted to the next generation. Additionally, we found novel mutants from M2 plants, suggesting that chronic gamma irradiation may be considered in tomato mutation breeding.


2021 ◽  
Author(s):  
Jumpei Yamazaki ◽  
Yuki Matsumoto ◽  
Jaroslav Jelinek ◽  
Teita Ishizaki ◽  
Shingo Maeda ◽  
...  

Abstract Background: DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Results: Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps from 16 somatic tissues. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (>70%, 52.5%-64.6% of all CpG sites analyzed) or unmethylated (<30%, 22.5%-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Conclusions: Our study provides basic dataset for DNA methylation profiles in dogs.


Sign in / Sign up

Export Citation Format

Share Document