An overview of deep learning methods for image registration with focus on feature-based approaches

2020 ◽  
Vol 11 (2) ◽  
pp. 113-135
Author(s):  
Kavitha Kuppala ◽  
Sandhya Banda ◽  
Thirumala Rao Barige
2021 ◽  
Vol 7 (3) ◽  
pp. 51
Author(s):  
Emanuela Paladini ◽  
Edoardo Vantaggiato ◽  
Fares Bougourzi ◽  
Cosimo Distante ◽  
Abdenour Hadid ◽  
...  

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems. In this paper, we study different hand-crafted feature-based and deep learning methods using two popular multi-classes CRC-tissue-type databases: Kather-CRC-2016 and CRC-TP. For the hand-crafted features, we use two texture descriptors (LPQ and BSIF) and their combination. In addition, two classifiers are used (SVM and NN) to classify the texture features into distinct CRC tissue types. For the deep learning methods, we evaluate four Convolutional Neural Network (CNN) architectures (ResNet-101, ResNeXt-50, Inception-v3, and DenseNet-161). Moreover, we propose two Ensemble CNN approaches: Mean-Ensemble-CNN and NN-Ensemble-CNN. The experimental results show that the proposed approaches outperformed the hand-crafted feature-based methods, CNN architectures and the state-of-the-art methods in both databases.


2021 ◽  
Vol 11 (4) ◽  
pp. 1754
Author(s):  
Jooyoung Kim ◽  
Sojung Go ◽  
Kyoungjin Noh ◽  
Sangjun Park ◽  
Soochahn Lee

Retinal photomontages, which are constructed by aligning and integrating multiple fundus images, are useful in diagnosing retinal diseases affecting peripheral retina. We present a novel framework for constructing retinal photomontages that fully leverage recent deep learning methods. Deep learning based object detection is used to define the order of image registration and blending. Deep learning based vessel segmentation is used to enhance image texture to improve registration performance within a two step image registration framework comprising rigid and non-rigid registration. Experimental evaluation demonstrates the robustness of our montage construction method with an increased amount of successfully integrated images as well as reduction of image artifacts.


2021 ◽  
Vol 2021 ◽  
pp. 1-25
Author(s):  
Cuiyin Liu ◽  
Jishang Xu ◽  
Feng Wang

For image registration, feature detection and description are critical steps that identify the keypoints and describe them for the subsequent matching to estimate the geometric transformation parameters between two images. Recently, there has been a large increase in the research methods of detection operators and description operators, from traditional methods to deep learning methods. To solve the problem, that is, which operator is suitable for specific application problems under different imaging conditions, the paper systematically reviewed commonly used descriptors and detectors from artificial methods to deep learning methods, and the corresponding principle, analysis, and comparative experiments are given as well. We introduce the handcrafted detectors including FAST, BRISK, ORB, SURF, SIFT, and KAZE and the handcrafted descriptors including BRISK, FREAK, BRIEF, SURF, ORB, SIFT, KAZE. At the same time, we review detectors based on deep learning technology including DetNet, TILDE, LIFT, multiscale detector, SuperPoint, and descriptors based on deep learning including pretrained descriptor, Siamese descriptor, LIFT, triplet network, and SuperPoint. Two group of comparison experiments are compared comprehensively and objectively on representative datasets. Finally, we concluded with insightful discussions and conclusions of descriptor and detector selection for specific application problem and hope this survey can be a reference for researchers and engineers in image registration and related fields.


2020 ◽  
Author(s):  
Saeed Nosratabadi ◽  
Amir Mosavi ◽  
Puhong Duan ◽  
Pedram Ghamisi ◽  
Filip Ferdinand ◽  
...  

2020 ◽  
Vol 26 ◽  
Author(s):  
Xiaoping Min ◽  
Fengqing Lu ◽  
Chunyan Li

: Enhancer-promoter interactions (EPIs) in the human genome are of great significance to transcriptional regulation which tightly controls gene expression. Identification of EPIs can help us better deciphering gene regulation and understanding disease mechanisms. However, experimental methods to identify EPIs are constrained by the fund, time and manpower while computational methods using DNA sequences and genomic features are viable alternatives. Deep learning methods have shown promising prospects in classification and efforts that have been utilized to identify EPIs. In this survey, we specifically focus on sequence-based deep learning methods and conduct a comprehensive review of the literatures of them. We first briefly introduce existing sequence-based frameworks on EPIs prediction and their technique details. After that, we elaborate on the dataset, pre-processing means and evaluation strategies. Finally, we discuss the challenges these methods are confronted with and suggest several future opportunities.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3719
Author(s):  
Aoxin Ni ◽  
Arian Azarang ◽  
Nasser Kehtarnavaz

The interest in contactless or remote heart rate measurement has been steadily growing in healthcare and sports applications. Contactless methods involve the utilization of a video camera and image processing algorithms. Recently, deep learning methods have been used to improve the performance of conventional contactless methods for heart rate measurement. After providing a review of the related literature, a comparison of the deep learning methods whose codes are publicly available is conducted in this paper. The public domain UBFC dataset is used to compare the performance of these deep learning methods for heart rate measurement. The results obtained show that the deep learning method PhysNet generates the best heart rate measurement outcome among these methods, with a mean absolute error value of 2.57 beats per minute and a mean square error value of 7.56 beats per minute.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4595
Author(s):  
Parisa Asadi ◽  
Lauren E. Beckingham

X-ray CT imaging provides a 3D view of a sample and is a powerful tool for investigating the internal features of porous rock. Reliable phase segmentation in these images is highly necessary but, like any other digital rock imaging technique, is time-consuming, labor-intensive, and subjective. Combining 3D X-ray CT imaging with machine learning methods that can simultaneously consider several extracted features in addition to color attenuation, is a promising and powerful method for reliable phase segmentation. Machine learning-based phase segmentation of X-ray CT images enables faster data collection and interpretation than traditional methods. This study investigates the performance of several filtering techniques with three machine learning methods and a deep learning method to assess the potential for reliable feature extraction and pixel-level phase segmentation of X-ray CT images. Features were first extracted from images using well-known filters and from the second convolutional layer of the pre-trained VGG16 architecture. Then, K-means clustering, Random Forest, and Feed Forward Artificial Neural Network methods, as well as the modified U-Net model, were applied to the extracted input features. The models’ performances were then compared and contrasted to determine the influence of the machine learning method and input features on reliable phase segmentation. The results showed considering more dimensionality has promising results and all classification algorithms result in high accuracy ranging from 0.87 to 0.94. Feature-based Random Forest demonstrated the best performance among the machine learning models, with an accuracy of 0.88 for Mancos and 0.94 for Marcellus. The U-Net model with the linear combination of focal and dice loss also performed well with an accuracy of 0.91 and 0.93 for Mancos and Marcellus, respectively. In general, considering more features provided promising and reliable segmentation results that are valuable for analyzing the composition of dense samples, such as shales, which are significant unconventional reservoirs in oil recovery.


Sign in / Sign up

Export Citation Format

Share Document