Mechanical performance and corrosion resistance of reinforced concrete with marble waste

Author(s):  
Laidi Babouri ◽  
Yasmina Biskri ◽  
Fouzia Khadraoui ◽  
Yassine El Mendili
2021 ◽  
Author(s):  
jawad Ahmad ◽  
Fahad Aslam F.A

Abstract Self compacting concrete (SSC) is also brittle nature, resulting in abrupt failure without giving any warning, which is unacceptable for any construction materials. Therefore, SCC requires tensile reinforcement to increase tensile capacity and avoid the undesirable brittle failure of SCC. However, fiber improved tensile capacity more efficiently than compressive strength. Therefore, it important add pozzolanic material to fiber reinforced concrete to obtain high strength, durable and ductile concrete. This research is carried out to evaluate the qualities of concrete with addition of waste marble and coconut fiber in concrete. Marble waste used as binding (pozzolanic) materials in proportion of 5.0 to 30% by weight of cement in increment of 5.0% and concrete is reinforced with coconut fiber in proportion of 0.5% to 3.0% by weight of cement in increment of 0.5 %. Rheological properties were assessed through its passing ability and flowability by using Slump flow, Slump T50, L-Box, and V-funnel tests while mechanical performance were evaluated through compressive, split tensile, flexure and pull out tests. Tests results indicate that marble waste and coconut fiber decrease the passing ability and filling ability of SCC. Furthermore, tests results indicate that marble waste up to 20% and coconut fiber addition 2.0% by weight of cement have a tendency to enhance the mechanical strength of SCC. Finally, Statistical analysis (RSM) was used to optimize the combined substitution of marble waste and coconut fiber to obtain high strength concrete.


Materials ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 240
Author(s):  
Alejandro Meza ◽  
Pablo Pujadas ◽  
Laura Montserrat Meza ◽  
Francesc Pardo-Bosch ◽  
Rubén D. López-Carreño

Discarded polyethylene terephthalate (PET) bottles have damaged our ecosystem. Problems of marine fauna conservation and land fertility have been related to the disposal of these materials. Recycled fibre is an opportunity to reduce the levels of waste in the world and increase the mechanical performance of the concrete. PET as concrete reinforcement has demonstrated ductility and post-cracking strength. However, its performance could be optimized. This study considers a statistical-experimental analysis to evaluate recycled PET fibre reinforced concrete with various fibre dose and aspect ratio. 120 samples were experimented under workability, compressive, flexural, and splitting tensile tests. The results pointed out that the fibre dose has more influence on the responses than its fibre aspect ratio, with statistical relation on the tensional toughness, equivalent flexural strength ratio, volumetric weight, and the number of fibres. Moreover, the fibre aspect ratio has a statistical impact on the tensional toughness. In general, the data indicates that the optimal recycled PET fibre reinforced concrete generates a superior performance than control samples, with an improvement similar to those reinforced with virgin fibres.


2021 ◽  
Vol 5 (11) ◽  
pp. 290
Author(s):  
Panagiotis Kapsalis ◽  
Tine Tysmans ◽  
Danny Van Hemelrijck ◽  
Thanasis Triantafillou

Textile-reinforced concrete (TRC) is a promising composite material with enormous potential in structural applications because it offers the possibility to construct slender, lightweight, and robust elements. However, despite the good heat resistance of the inorganic matrices and the well-established knowledge on the high-temperature performance of the commonly used fibrous reinforcements, their application in TRC elements with very small thicknesses makes their effectiveness against thermal loads questionable. This paper presents a state-of-the-art review on the thermomechanical behavior of TRC, focusing on its mechanical performance both during and after exposure to high temperatures. The available knowledge from experimental investigations where TRC has been tested in thermomechanical conditions as a standalone material is compiled, and the results are compared. This comparative study identifies the key parameters that determine the mechanical response of TRC to increased temperatures, being the surface treatment of the textiles and the combination of thermal and mechanical loads. It is concluded that the uncoated carbon fibers are the most promising solution for a fire-safe TRC application. However, the knowledge gaps are still large, mainly due to the inconsistency of the testing methods and the stochastic behavior of phenomena related to heat treatment (such as spalling).


Reinforced concrete structures are subjected to deterioration due to many factors such as corrosion of reinforcing steel. Ultimate strengths of structural elements can be greatly affected by these deteriorating factors. There are numerous methods and techniques used to protect these structural elements. The mortar layer (Plastering) is considered the first defense line against all the deteriorating factors. The main goal of this research is to investigate to what extent the plastering layer can protect reinforced concrete beams against corrosion. The aim of the experimental program is to study the effect of plastering layer on corrosion resistance of reinforced concrete beams. Four reinforced concrete beams (1002001100 mms) and four Lollypop specimens (cylinders 100200 mms) were tested and described as follows: • A beam and a lollypop specimen without any plastering layer (control). • A beam and a lollypop specimen with traditional plastering layer (cement + sand + water). • A beam and a lollypop specimen with modified plastering (traditional plastering + waterproof admixtures). • A beam and a lollypop specimen with painted and modified plastering layer (traditional plastering + waterproof admixtures + external waterproof paint). These eight specimens were subjected to corrosion using accelerated corrosion technique, after that the four beams were tested in flexure under three point load arrangement while the four lollypops were used to calculate the total mass loss due to accelerated corrosion. The test results were used to figure out the effect of plastering layer on corrosion resistance of RC beams.


2018 ◽  
Vol 10 (6) ◽  
pp. 2004 ◽  
Author(s):  
Hector Campos Silva ◽  
Pedro Garces Terradillos ◽  
Emilio Zornoza ◽  
Jose Mendoza-Rangel ◽  
Pedro Castro-Borges ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document