scholarly journals State-of-the-Art Review on Experimental Investigations of Textile-Reinforced Concrete Exposed to High Temperatures

2021 ◽  
Vol 5 (11) ◽  
pp. 290
Author(s):  
Panagiotis Kapsalis ◽  
Tine Tysmans ◽  
Danny Van Hemelrijck ◽  
Thanasis Triantafillou

Textile-reinforced concrete (TRC) is a promising composite material with enormous potential in structural applications because it offers the possibility to construct slender, lightweight, and robust elements. However, despite the good heat resistance of the inorganic matrices and the well-established knowledge on the high-temperature performance of the commonly used fibrous reinforcements, their application in TRC elements with very small thicknesses makes their effectiveness against thermal loads questionable. This paper presents a state-of-the-art review on the thermomechanical behavior of TRC, focusing on its mechanical performance both during and after exposure to high temperatures. The available knowledge from experimental investigations where TRC has been tested in thermomechanical conditions as a standalone material is compiled, and the results are compared. This comparative study identifies the key parameters that determine the mechanical response of TRC to increased temperatures, being the surface treatment of the textiles and the combination of thermal and mechanical loads. It is concluded that the uncoated carbon fibers are the most promising solution for a fire-safe TRC application. However, the knowledge gaps are still large, mainly due to the inconsistency of the testing methods and the stochastic behavior of phenomena related to heat treatment (such as spalling).

2021 ◽  
Vol 28 (3) ◽  
pp. 88-102
Author(s):  
Assim Arif ◽  
Saad Raoof

Textile Reinforced Concrete (TRC) can be used as independent structural elements due to its high loading capacity and proper to product light weight and thin walled structural elements. In this study, the bending behavior of TRC plates that reinforced with dry carbon fiber textile and exposed to high temperatures was experimentally studied under 4-points bending loading. The examined parameters were; (a) number of textile fiber reinforcements layers 1, 2 and 3 layers; (b) level of high temperatures 20°C, 200°C, 300°C, and 400°C. Firstly, the mechanical properties of the cementitious matrix and the tensile properties of TRC coupons at each predefined temperature were evaluated. The results showed that the ultimate tensile stress of the TRC coupons did not affect up to 200°C, however, a significant reduction observed at 300°C and 400°C by 19% and 24% respectively. Regarding the compressive strength and flexural strength of the cementitious matrix, the degradation was not severe until 200°C, while it became critical at 400 °C (23% and 22% respectively). The result of the bending of TRC plates showed that doubling and tripling textile fiber reinforcements layers improved the flexural loading. In general, increasing the level of temperatures resulted in decrease in the flexural capacity of TRC plates. The highest decrease recorded for the specimen reinforced with 1-layer of carbon fiber textile subjected to 400 °C and was 33%.


2015 ◽  
Vol 719-720 ◽  
pp. 171-176 ◽  
Author(s):  
Kevin Pidun ◽  
Michael Schulze

By now the application of Textile Reinforced Concrete (TRC) for facade constructions can be considered as state of the art. Especially ventilated curtain walls made of TRC and sandwich elements made in combination of TRC-layers and foam cores recently are realized in pilot projects, which are predominantly located in Aachen, Germany. Textile reinforced concrete elements for architectural facade applications give new chances for architects and engineers design.


Author(s):  
Igor Souza Hoffman ◽  
Jorge Henrique Piva ◽  
Augusto Wanderlind ◽  
Elaine Guglielmi Pavei Antunes

abstract: The use of GFRP (Glass Fiber Reinforced Polymers) structural profiles in the construction sector is growing due to their attractive properties, such as high mechanical strength and durability in aggressive environments. With this, it is necessary to conduct studies that deepen the knowledge about the performance of these materials in structural applications. Therefore, this work aims to analyze the mechanical performance of reinforced concrete beams coated with GFRP profiles, in comparison to reinforced concrete beams, by analyzing groups with different spacing between transversal reinforcement. In all groups there was no change in the longitudinal reinforcement, and the D and Q groups were, respectively, made up of transverse reinforcement spaced twice and quadruple the one calculated for the reference beams, and presented the GFRP profiles in their constitution. All beams were tested at four-point bending, and strain gauges were installed in one of the beams of each group studied. The results obtained in the tests showed an increase in strength of 83.67% in the beams of group D, and 79.91% for group Q, in relation to the references. The analysis of longitudinal deformations made it possible to verify increases in stiffness and the moment of cracking in composite beams. Thus, based on this study, the composite structures studied may constitute future solutions for constructions exposed to aggressive environmental conditions, in order to increase their durability and also to contribute to the design of such structural elements with lower reinforcement rates.


2021 ◽  
Vol 72 (1) ◽  
pp. 127-142
Author(s):  
Tien Tran Manh ◽  
Tu Do Ngoc ◽  
Hong Vu Xuan

Over the past two decades, textile-reinforced concrete (TRC) materials have been increasingly and widely used for the strengthening/reinforcement of civil engineering works. Thanks to their many advantages as the durability, considerable bond strength with the reinforced concrete (RC) members, best recycling conditions, the TRC materials are considered as an optimal alternative solution to substitute the traditional strengthening and reinforcing materials FRP (Fiber-Reinforced Polymer). The mechanical behavior of TRC composite has been characterized in previous experimental studies. This paper presents a state-of-the-art review of the mechanical behavior of TRC composite under tensile loading. By inheriting from previous review studies, this paper updates the experimental studies on the tensile behavior of TRC composite in the last decade. The review addresses, firstly the mechanical properties of constituent materials in TRC as reinforcement textile, cementitious matrix, and textile/matrix interface. Secondly, it addresses the tensile behavior of TRC composite, including the characterization methods as well as analyses of its strain-hardening behavior with different phases. The paper then discusses the main factors which influence the mechanical behavior of TRC materials in the available experimental studies. Finally, the conclusion of this review terminates this paper.


2019 ◽  
Vol 9 (7) ◽  
pp. 1382 ◽  
Author(s):  
Jan Bielak ◽  
Viviane Adam ◽  
Josef Hegger ◽  
Martin Classen

A reliable and economic utilization of textile-reinforced concrete in construction requires appropriate design concepts. Unlike designs for bending, the development of models for shear is still the subject of current research. Especially for thin slabs, systematic experimental investigations are lacking. In this paper, the results of an experimental campaign on 27 carbon-textile reinforced slab segments tested in three-point bending are presented. The shear-span to depth ratio and member size were key variation parameters in this study. Increasing the structural depth of members led to a reduction in relative shear strength, while variation of shear slenderness controlled the efficiency of direct stress fields between load introduction and support. Interestingly, direct load transfer was activated up to a shear slenderness ratio of 4, which is significantly higher than in reinforced concrete (a/d < 2.5–3) and may result from the bond characteristics of the textile reinforcement. The experimental shear strengths were compared to predictions from existing models for shear of fiber-reinforced polymer (FRP)-reinforced concrete. The study shows that these FRP calculation models also predict the ultimate shear force for textile-reinforced concrete (TRC) tests presented in this paper with sufficient accuracy. Existing approaches for the size effect seem transferable as well. In order to validate the models for general use in TRC shear design, a compilation and comparison with larger experimental databases is required in future works.


2021 ◽  
Vol 11 (6) ◽  
pp. 2771
Author(s):  
Mohammad Alma’aitah ◽  
Bahman Ghiassi ◽  
Ali Dalalbashi

This paper aims to provide a review of the current literature on the durability of textile-reinforced concrete and mortar (TRC/TRM) composites. Most previous studies have focused on the role of chemical attacks, freeze-thaw conditions, and high temperatures on the mechanical performance of these composites. Information on the long-term performance of TRCs under synergistic action of mechanical and environmental loads is scarce. Considering the variety of fabrics and matrices used for the production of TRC composites, the existing data are still very limited and comprehensive studies are needed in this field. Additionally, due to the lack of standard procedures, different approaches are often followed for durability or post-ageing mechanical tests, or sufficient data on the curing and post-ageing preparation procedures followed are not provided. These have led to incompatibility of the existing data and in some cases contradictory results on the durability of these materials.


2020 ◽  
Vol 10 (7) ◽  
pp. 2280 ◽  
Author(s):  
Filippo Nalli ◽  
Luana Bottini ◽  
Alberto Boschetto ◽  
Luca Cortese ◽  
Francesco Veniali

Additive manufacturing is now capable of delivering high-quality, complex-shaped metallic components. The titanium alloy Ti6Al4V is an example of a printable metal being broadly used for advanced structural applications. A sound characterization of static mechanical properties of additively manufactured material is crucial for its proper application, and here specifically for Ti6Al4V. This includes a complete understanding of the influence of postprocess treatment on the material behavior, which has not been reached yet. In the present paper, the postprocess effects of surface finish and heat treatment on the mechanical performance of Ti6Al4V after selective laser melting were investigated. Some samples were subjected to barrel finishing at two different intensities, while different sets of specimens underwent several thermal cycles. As a reference, a control group of specimens was included, which did not undergo any postprocessing. The treatments were selected to be effective and easy to perform, being suitable for real industrial applications. Tensile tests were performed on all the samples, to obtain yield stress, ultimate tensile strength and elongation at fracture. The area reduction of the barrel-finished samples, after being tested, was measured by using a 3D scanner, as a further indication of ductility. Experimental results are reported and discussed, highlighting the effect of postprocessing treatments on the mechanical response. We then propose the optimal postprocessing procedure to enhance ductility without compromising strength, for structures manufactured from Ti6Al4V with selective laser melting.


Sign in / Sign up

Export Citation Format

Share Document