Assessment of red-edge vegetation descriptors in a modified water cloud model for forward modelling using Sentinel – 1A and Sentinel – 2 satellite data

2020 ◽  
Vol 42 (3) ◽  
pp. 794-804
Author(s):  
Vijay Pratap Yadav ◽  
Rajendra Prasad ◽  
Ruchi Bala ◽  
Prashant K. Srivastava
Water ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 135
Author(s):  
Min Zhang ◽  
Fengkai Lang ◽  
Nanshan Zheng

The objective of this paper is to propose a combined approach for the high-precision mapping of soil moisture during the wheat growth cycle based on synthetic aperture radar (SAR) (Radarsat-2) and optical satellite data (Landsat-8). For this purpose, the influence of vegetation was removed from the total backscatter by using the modified water cloud model (MWCM), which takes the vegetation fraction (fveg) into account. The VV/VH polarization radar backscattering coefficients database was established by a numerical simulation based on the advanced integrated equation model (AIEM) and the cross-polarized ratio of the Oh model. Then the empirical relationship between the bare soil backscattering coefficient and both the soil moisture and the surface roughness was developed by regression analysis. The surface roughness in this paper was described by using the effective roughness parameter and the combined roughness form. The experimental results revealed that using effective roughness as the model input instead of in-situ measured roughness can obtain soil moisture with high accuracy and effectively avoid the uncertainty of roughness measurement. The accuracy of soil moisture inversion could be improved by introducing vegetation fraction on the basis of the water cloud model (WCM). There was a good correlation between the estimated soil moisture and the observed values, with a root mean square error (RMSE) of about 4.14% and the coefficient of determination (R2) about 0.7390.


Author(s):  
V. P. Yadav ◽  
R. Prasad ◽  
R. Bala ◽  
A. K. Vishwakarma ◽  
S. A. Yadav

<p><strong>Abstract.</strong> A modified water cloud model (WCM) was used to estimate the biophysical parameters of wheat crop using Sentinel-1A and Landsat-8 satellite images. The approach of combining the potential of SAR and optical data provided a new technique for the estimation of biophysical parameters of wheat crop. The biophysical parameters estimation was done using non-linear least squares optimization technique by minimizing the cost function between the backscattering coefficients (&amp;sigma;<sup>0</sup>) computed from the Sentinel-1A image and simulated by the modified WCM followed by look up table algorithm(LUT). The modified WCM integrates the full account of backscattering response on vegetation and bare soil by adding vegetation fraction. The modified WCM was found more sensitive than the original WCM because of incorporation of vegetation fraction (f<sub>veg</sub>) derived from the Landsat-8 satellite data. The estimated values of leaf area index (LAI) by modified WCM at VV polarization shows good correlation (R<sup>2</sup><span class="thinspace"></span>=<span class="thinspace"></span>83.08<span class="thinspace"></span>% and RMSE<span class="thinspace"></span>=<span class="thinspace"></span>0.502<span class="thinspace"></span>m<sup>2</sup>/m<sup>2</sup>) with the observed values. Whereas, leaf water area index (LWAI) shows comparatively poor correspondence (R<sup>2</sup><span class="thinspace"></span>=<span class="thinspace"></span>76<span class="thinspace"></span>% and RMSE<span class="thinspace"></span>=<span class="thinspace"></span>0.560<span class="thinspace"></span>m<sup>2</sup>/m<sup>2</sup>) with the observed data in comparison to LAI estimation at VV polarization. The performance indices show that the modified WCM was found more accurate for the estimation of wheat crop parameters during the whole growth season in Varanasi district, India. Thus, the modified WCM shows significant potential for the accurate estimation of LAI and LWAI of wheat crop on incorporating both SAR and optical satellite data.</p>


2021 ◽  
Vol 10 (3) ◽  
pp. 243-250
Author(s):  
Rida KHELLOUK ◽  
Ahmed BARAKAT ◽  
Aafaf EL JAZOULİ ◽  
Hayat LİONBOUİ ◽  
Tarik BENABDELOUAHAB

2020 ◽  
Vol 12 (14) ◽  
pp. 2303 ◽  
Author(s):  
Chunfeng Ma ◽  
Xin Li ◽  
Matthew F. McCabe

Estimating soil moisture based on synthetic aperture radar (SAR) data remains challenging due to the influences of vegetation and surface roughness. Here we present an algorithm that simultaneously retrieves soil moisture, surface roughness and vegetation water content by jointly using high-resolution Sentinel-1 SAR and Sentinel-2 multispectral imagery, with an application directed towards the provision of information at the precision agricultural scale. Sentinel-2-derived vegetation water indices are investigated and used to quantify the backscatter resulting from the vegetation canopy. The proposed algorithm then inverts the water cloud model to simultaneously estimate soil moisture and surface roughness by minimizing a cost function constructed by model simulations and SAR observations. To examine the performance of VV- and VH-polarized backscatters on soil moisture retrievals, three retrieval schemes are explored: a single channel algorithm using VV (SCA-VV) and VH (SCA-VH) polarizations and a dual channel algorithm using both VV and VH polarizations (DCA-VVVH). An evaluation of the approach using a combination of a cosmic-ray soil moisture observing system (COSMOS) and Soil Climate Analysis Network measurements over Nebraska shows that the SCA-VV scheme yields good agreement at both the COSMOS footprint and single-site scales. The features of the algorithms that have the most impact on the retrieval accuracy include the vegetation water content estimation scheme, parameters of the water cloud model and the specification of initial ranges of soil moisture and roughness, all of which are comprehensively analyzed and discussed. Through careful consideration and selection of these factors, we demonstrate that the proposed SCA-VV approach can provide reasonable soil moisture retrievals, with RMSE ranging from 0.039 to 0.078 m3/m3 and R2 ranging from 0.472 to 0.665, highlighting the utility of SAR for application at the precision agricultural scale.


2021 ◽  
Vol 13 (7) ◽  
pp. 1348
Author(s):  
Mehdi Hosseini ◽  
Heather McNairn ◽  
Scott Mitchell ◽  
Laura Dingle Robertson ◽  
Andrew Davidson ◽  
...  

The water cloud model (WCM) can be inverted to estimate leaf area index (LAI) using the intensity of backscatter from synthetic aperture radar (SAR) sensors. Published studies have demonstrated that the WCM can accurately estimate LAI if the model is effectively calibrated. However, calibration of this model requires access to field measures of LAI as well as soil moisture. In contrast, machine learning (ML) algorithms can be trained to estimate LAI from satellite data, even if field moisture measures are not available. In this study, a support vector machine (SVM) was trained to estimate the LAI for corn, soybeans, rice, and wheat crops. These results were compared to LAI estimates from the WCM. To complete this comparison, in situ and satellite data were collected from seven Joint Experiment for Crop Assessment and Monitoring (JECAM) sites located in Argentina, Canada, Germany, India, Poland, Ukraine and the United States of America (U.S.A.). The models used C-Band backscatter intensity for two polarizations (like-polarization (VV) and cross-polarization (VH)) acquired by the RADARSAT-2 and Sentinel-1 SAR satellites. Both the WCM and SVM models performed well in estimating the LAI of corn. For the SVM, the correlation (R) between estimated LAI for corn and LAI measured in situ was reported as 0.93, with a root mean square error (RMSE) of 0.64 m2m−2 and mean absolute error (MAE) of 0.51 m2m−2. The WCM produced an R-value of 0.89, with only slightly higher errors (RMSE of 0.75 m2m−2 and MAE of 0.61 m2m−2) when estimating corn LAI. For rice, only the SVM model was tested, given the lack of soil moisture measures for this crop. In this case, both high correlations and low errors were observed in estimating the LAI of rice using SVM (R of 0.96, RMSE of 0.41 m2m−2 and MAE of 0.30 m2m−2). However, the results demonstrated that when the calibration points were limited (in this case for soybeans), the WCM outperformed the SVM model. This study demonstrates the importance of testing different modeling approaches over diverse agro-ecosystems to increase confidence in model performance.


2020 ◽  
Vol 69 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Kishan Singh Rawat ◽  
Sudhir Kumar Singh ◽  
Ram L. Ray ◽  
Szilárd Szabó ◽  
Sanjeev Kumar

The objective was to parameterize a modified water cloud model using crop coefficients (A and B). These crop coefficients were derived from Landsat-8 and Sentinel-2 data. Whereas the coefficients C and D are of soil parameters. The water cloud model was modified using crop coefficients by minimizing the RMSE between observed VVσ0 and Sentinel-1 based simulated VVσ0. The comparison with observed and simulated VV polarized σ0 showed low RMSE (0.81 dB) and strong R2 of 0.98 for NDVI-EVI combination. However, based on other possible combinations of vegetation indices VVσ0 and simulated VVσ0 do not show a good statistical agreement. It was observed that the errors in crop coefficients (A and B) are sensitive to errors in initial vegetation/canopy descriptor parameters.


2021 ◽  
Vol 13 (2) ◽  
pp. 233
Author(s):  
Ilja Vuorinne ◽  
Janne Heiskanen ◽  
Petri K. E. Pellikka

Biomass is a principal variable in crop monitoring and management and in assessing carbon cycling. Remote sensing combined with field measurements can be used to estimate biomass over large areas. This study assessed leaf biomass of Agave sisalana (sisal), a perennial crop whose leaves are grown for fibre production in tropical and subtropical regions. Furthermore, the residue from fibre production can be used to produce bioenergy through anaerobic digestion. First, biomass was estimated for 58 field plots using an allometric approach. Then, Sentinel-2 multispectral satellite imagery was used to model biomass in an 8851-ha plantation in semi-arid south-eastern Kenya. Generalised Additive Models were employed to explore how well biomass was explained by various spectral vegetation indices (VIs). The highest performance (explained deviance = 76%, RMSE = 5.15 Mg ha−1) was achieved with ratio and normalised difference VIs based on the green (R560), red-edge (R740 and R783), and near-infrared (R865) spectral bands. Heterogeneity of ground vegetation and resulting background effects seemed to limit model performance. The best performing VI (R740/R783) was used to predict plantation biomass that ranged from 0 to 46.7 Mg ha−1 (mean biomass 10.6 Mg ha−1). The modelling showed that multispectral data are suitable for assessing sisal leaf biomass at the plantation level and in individual blocks. Although these results demonstrate the value of Sentinel-2 red-edge bands at 20-m resolution, the difference from the best model based on green and near-infrared bands at 10-m resolution was rather small.


2021 ◽  
Vol 13 (8) ◽  
pp. 1595
Author(s):  
Chunhua Li ◽  
Lizhi Zhou ◽  
Wenbin Xu

Wetland vegetation aboveground biomass (AGB) directly indicates wetland ecosystem health and is critical for water purification, carbon cycle, and biodiversity conservation. Accurate AGB estimation is essential for the monitoring and supervision of ecosystems, especially in seasonal floodplain wetlands. This paper explored the capability of spectral and texture features from the Sentinel-2 Multispectral Instrument (MSI) for modeling grassland AGB using random forest (RF) and extreme gradient boosting (XGBoost) algorithms in Shengjin Lake wetland (a Ramsar site). We use five-fold cross-validation to verify the model effectiveness. The results indicated that the RF and XGBoost models had a robust and efficient performance (with root mean square error (RMSE) of 126.571 g·m−2 and R2 of 0.844 for RF, RMSE of 112.425 g·m−2 and R2 of 0.869 for XGBoost), and the XGBoost models, by contrast, performed better. Both traditional and red-edge vegetation indices (VIs) obtained satisfactory results of AGB estimation (RMSE = 127.936 g·m−2, RMSE = 125.879 g·m−2 in XGBoost models, respectively), with the red-edge VIs contributed more to the AGB models. Moreover, we selected eight gray-level co-occurrence matrix (GLCM) textures calculated by four processing window sizes using the mean value of four offsets, and further analyzed the results of three analysis sets. Textures derived from traditional and red-edge bands using a 7 × 7 window size performed better in biomass estimation. This finding suggested that textures derived from the traditional bands were as important as the red-edge bands. The introduction of textures moderately improved the accuracy of modeling AGB, whereas the use of textures alo ne was not satisfactory. This research demonstrated that using the Sentinel-2 MSI and the two ensemble algorithms is an effective method for long-term dynamic monitoring and assessment of grass AGB in seasonal floodplain wetlands, which can support sustainable management and carbon accounting of wetland ecosystems.


2020 ◽  
Vol 12 (17) ◽  
pp. 2760
Author(s):  
Gourav Misra ◽  
Fiona Cawkwell ◽  
Astrid Wingler

Remote sensing of plant phenology as an indicator of climate change and for mapping land cover has received significant scientific interest in the past two decades. The advancing of spring events, the lengthening of the growing season, the shifting of tree lines, the decreasing sensitivity to warming and the uniformity of spring across elevations are a few of the important indicators of trends in phenology. The Sentinel-2 satellite sensors launched in June 2015 (A) and March 2017 (B), with their high temporal frequency and spatial resolution for improved land mapping missions, have contributed significantly to knowledge on vegetation over the last three years. However, despite the additional red-edge and short wave infra-red (SWIR) bands available on the Sentinel-2 multispectral instruments, with improved vegetation species detection capabilities, there has been very little research on their efficacy to track vegetation cover and its phenology. For example, out of approximately every four papers that analyse normalised difference vegetation index (NDVI) or enhanced vegetation index (EVI) derived from Sentinel-2 imagery, only one mentions either SWIR or the red-edge bands. Despite the short duration that the Sentinel-2 platforms have been operational, they have proved their potential in a wide range of phenological studies of crops, forests, natural grasslands, and other vegetated areas, and in particular through fusion of the data with those from other sensors, e.g., Sentinel-1, Landsat and MODIS. This review paper discusses the current state of vegetation phenology studies based on the first five years of Sentinel-2, their advantages, limitations, and the scope for future developments.


Sign in / Sign up

Export Citation Format

Share Document