Toxicity potential of electroplating wastewater and its bioremediation approaches: a review

2021 ◽  
Vol 10 (1) ◽  
pp. 238-254
Author(s):  
Vinay Kumar ◽  
S. K. Dwivedi
2003 ◽  
Author(s):  
Kathleen S. Smith ◽  
Thomas R. Wildeman ◽  
LaDonna M. Choate ◽  
Sharon F. Diehl ◽  
David L. Fey ◽  
...  

1988 ◽  
Author(s):  
Valerie G. Coppes ◽  
Charlotte L. Speckman ◽  
Jr Korte ◽  
Don W.

Author(s):  
Dongxu Liang ◽  
Manhong Ji ◽  
Suiyi Zhu ◽  
Yu Chen ◽  
Zhihua Wang ◽  
...  

Pickling sludge was converted to a novel product of KFeS2 nanorods via a facile hydrothermal method that effectively removes heavy metals from electroplating wastewater.


2021 ◽  
Vol 13 (4) ◽  
pp. 1781
Author(s):  
Gaurav Chugh ◽  
Kadambot H. M. Siddique ◽  
Zakaria M. Solaiman

Nanobiotechnology in agriculture is a driver for modern-day smart, efficient agricultural practices. Nanoparticles have been shown to stimulate plant growth and disease resistance. The goal of sustainable farming can be accomplished by developing and sustainably exploiting the fruits of nanobiotechnology to balance the advantages nanotechnology provides in tackling environmental challenges. This review aims to advance our understanding of nanobiotechnology in relevant areas, encourage interactions within the research community for broader application, and benefit society through innovation to realize sustainable agricultural practices. This review critically evaluates what is and is not known in the domain of nano-enabled agriculture. It provides a holistic view of the role of nanobiotechnology in multiple facets of agriculture, from the synthesis of nanoparticles to controlled and targeted delivery, uptake, translocation, recognition, interaction with plant cells, and the toxicity potential of nanoparticle complexes when presented to plant cells.


2021 ◽  
Vol 38 (3) ◽  
pp. 514-522
Author(s):  
Raja Norimie Raja Sulaiman ◽  
Norul Fatiha Mohd Noah ◽  
Norasikin Othman ◽  
Norela Jusoh ◽  
Muhammad Bukhari Rosly

2021 ◽  
Vol 22 (10) ◽  
pp. 5401
Author(s):  
Marta Dziewięcka ◽  
Mirosława Pawlyta ◽  
Łukasz Majchrzycki ◽  
Katarzyna Balin ◽  
Sylwia Barteczko ◽  
...  

Interest in graphene oxide nature and potential applications (especially nanocarriers) has resulted in numerous studies, but the results do not lead to clear conclusions. In this paper, graphene oxide is obtained by multiple synthesis methods and generally characterized. The mechanism of GO interaction with the organism is hard to summarize due to its high chemical activity and variability during the synthesis process and in biological buffers’ environments. When assessing the biocompatibility of GO, it is necessary to take into account many factors derived from nanoparticles (structure, morphology, chemical composition) and the organism (species, defense mechanisms, adaptation). This research aims to determine and compare the in vivo toxicity potential of GO samples from various manufacturers. Each GO sample is analyzed in two concentrations and applied with food. The physiological reactions of an easy model Acheta domesticus (cell viability, apoptosis, oxidative defense, DNA damage) during ten-day lasting exposure were observed. This study emphasizes the variability of the GO nature and complements the biocompatibility aspect, especially in the context of various GO-based experimental models. Changes in the cell biomarkers are discussed in light of detailed physicochemical analysis.


Sign in / Sign up

Export Citation Format

Share Document