Resource recovery and utilization of bittern wastewater from salt production: a review of recovery technologies and their potential applications

2021 ◽  
Vol 10 (1) ◽  
pp. 294-321
Author(s):  
Arseto Yekti Bagastyo ◽  
Afrah Zhafirah Sinatria ◽  
Anita Dwi Anggrainy ◽  
Komala Affiyanti Affandi ◽  
Sucahyaning Wahyu Trihasti Kartika ◽  
...  
Membranes ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 839
Author(s):  
Rosmawati Naim ◽  
Goh Pei Sean ◽  
Zinnirah Nasir ◽  
Nadzirah Mohd Mokhtar ◽  
Nor Amirah Safiah Muhammad

Membrane processes have been extensively employed in diverse applications, specifically in industrial wastewater treatment. The technological development in membrane processes has rapidly advanced and accelerated beyond its common principle and operation. Tremendous efforts have been made in the advancement of membrane materials, fabrication method, membrane modification and integration with other technologies that can augment the existing membrane processes to another level. This review presents the recent development of hollow fiber membranes applied in wastewater treatment and resource recovery. The membrane working principles and treatment mechanism were discussed thoroughly, with the recent development of these hollow fiber membranes highlighted based on several types of membrane application. The current challenges and limitations which may hinder this technology from expanding were critically described to offer a better perspective for this technology to be adopted in various potential applications.


2021 ◽  
Author(s):  
Nan Zhang ◽  
Hui Ying Lai ◽  
Archana Gautam ◽  
Darien Yu De Kwek ◽  
Yibing Dong ◽  
...  

Abstract Hair contains about 80% keratins and 1–3% melanin packaged in melanosomes. Both of which are high-value and functional raw materials that have potential applications in wide ranging fields. While keratin extraction has been widely refined, efficient methods of melanosome extraction are limited. The extraction of melanosomes requires complete removal of keratin, thus combined keratin extraction and melanosome isolation is logical. Herein, a successive process to harvest melanosomes after keratin extraction from human hair waste was developed. The yield of melanosome was about 1.3% of total hair mass. The structure of harvested melanosomes is well preserved based on surface morphology and interior ultrastructural observations using electron microscopy. The chemical structure, UV-filtering ability, and thermal stability of the melanosomes are examined to demonstrate preservation of native functions. Our strategy of combining melanosome isolation with keratin extraction is shown to be effective and significantly improves the total resource recovery efficiency from human hair waste.


Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3466
Author(s):  
Mariana C. Chrispim ◽  
Fernanda de M. de Souza ◽  
Miklas Scholz ◽  
Marcelo A. Nolasco

Currently, it is important to develop strategic frameworks to support the selection of sustainable resource recovery solutions. This study applies a new framework for planning, implementation, and assessment of resource recovery strategies for a full-scale wastewater treatment plant (WWTP) in São Paulo megacity. The framework comprises several steps based on case study-specific data and information from current literature. Data were collected from various sources: a survey with a wastewater treatment utility, national and regional databases, and review of local regulations and international literature. Treatment configuration, wastewater and by-products composition, potential demand (for water, energy, and phosphorus), stakeholder identification, and local legislation were thoroughly discussed regarding decision-making on resource recovery. Scenario analysis was used to explore suitable nutrient and energy recovery measures based on indicators. Biogas recovery and sewage sludge composting showed more favorable conditions due to similar experiences in the area and robust legislation. The proposed framework is a simplified tool, and its application can support managers to get information on resource recovery and how to plan such initiatives in easier ways to facilitate wiser decision-making, and better operation and management. The results on framework use and refinement can guide potential applications in other contexts and stimulate public policy formulation and further research.


Author(s):  
D. Loretto ◽  
J. M. Gibson ◽  
S. M. Yalisove ◽  
R. T. Tung

The cobalt disilicide/silicon system has potential applications as a metal-base and as a permeable-base transistor. Although thin, low defect density, films of CoSi2 on Si(111) have been successfully grown, there are reasons to believe that Si(100)/CoSi2 may be better suited to the transmission of electrons at the silicon/silicide interface than Si(111)/CoSi2. A TEM study of the formation of CoSi2 on Si(100) is therefore being conducted. We have previously reported TEM observations on Si(111)/CoSi2 grown both in situ, in an ultra high vacuum (UHV) TEM and ex situ, in a conventional Molecular Beam Epitaxy system.The procedures used for the MBE growth have been described elsewhere. In situ experiments were performed in a JEOL 200CX electron microscope, extensively modified to give a vacuum of better than 10-9 T in the specimen region and the capacity to do in situ sample heating and deposition. Cobalt was deposited onto clean Si(100) samples by thermal evaporation from cobalt-coated Ta filaments.


Author(s):  
D. L. Callahan ◽  
Z. Ball ◽  
H. M. Phillips ◽  
R. Sauerbrey

Ultraviolet laser-irradiation can be used to induce an insulator-to-conductor phase transition on the surface of Kapton polyimide. Such structures have potential applications as resistors or conductors for VLSI applications as well as general utility electrodes. Although the percolative nature of the phase transformation has been well-established, there has been little definitive work on the mechanism or extent of transformation. In particular, there has been considerable debate about whether or not the transition is primarily photothermal in nature, as we propose, or photochemical. In this study, cross-sectional optical microscopy and transmission electron microscopy are utilized to characterize the nature of microstructural changes associated with the laser-induced pyrolysis of polyimide.Laser-modified polyimide samples initially 12 μm thick were prepared in cross-section by standard ultramicrotomy. Resulting contraction in parallel to the film surface has led to distortions in apparent magnification. The scale bars shown are calibrated for the direction normal to the film surface only.


Author(s):  
Amanda K. Petford-Long ◽  
A. Cerezo ◽  
M.G. Hetherington

The fabrication of multilayer films (MLF) with layer thicknesses down to one monolayer has led to the development of materials with unique properties not found in bulk materials. The properties of interest depend critically on the structure and composition of the films, with the interfacial regions between the layers being of particular importance. There are a number of magnetic MLF systems based on Co, several of which have potential applications as perpendicular magnetic (e.g Co/Cr) or magneto-optic (e.g. Co/Pt) recording media. Of particular concern are the effects of parameters such as crystallographic texture and interface roughness, which are determined by the fabrication conditions, on magnetic properties and structure.In this study we have fabricated Co-based MLF by UHV thermal evaporation in the prechamber of an atom probe field-ion microscope (AP). The multilayers were deposited simultaneously onto cobalt field-ion specimens (for AP and position-sensitive atom probe (POSAP) microanalysis without exposure to atmosphere) and onto the flat (001) surface of oxidised silicon wafers (for subsequent study in cross-section using high-resolution electron microscopy (HREM) in a JEOL 4000EX. Deposi-tion was from W filaments loaded with material in the form of wire (Co, Fe, Ni, Pt and Au) or flakes (Cr). The base pressure in the chamber was around 8×10−8 torr during deposition with a typical deposition rate of 0.05 - 0.2nm/s.


2020 ◽  
Vol 13 (5) ◽  
pp. 1429-1461 ◽  
Author(s):  
Xiaona Li ◽  
Jianwen Liang ◽  
Xiaofei Yang ◽  
Keegan R. Adair ◽  
Changhong Wang ◽  
...  

This review focuses on fundamental understanding, various synthesis routes, chemical/electrochemical stability of halide-based lithium superionic conductors, and their potential applications in energy storage as well as related challenges.


2019 ◽  
Vol 10 (45) ◽  
pp. 6116-6121 ◽  
Author(s):  
Tan Ji ◽  
Lei Xia ◽  
Wei Zheng ◽  
Guang-Qiang Yin ◽  
Tao Yue ◽  
...  

We present a new family of porphyrin-functionalized coordination star polymers prepared through combination of coordination-driven self-assembly and post-assembly polymerization. Their self-assembly behaviour in water and potential for photodynamic therapy were demonstrated.


2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


Sign in / Sign up

Export Citation Format

Share Document