scholarly journals The influence of yttria-stabilised zirconia and cerium oxide on the microstructural morphology and properties of a mica glass-ceramic for restorative dental materials

Author(s):  
Thapanee Srichumpong ◽  
Suphahud Pintasiri ◽  
Greg Heness ◽  
Cristina Leonelli ◽  
Ekarat Meechoowas ◽  
...  
Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


2001 ◽  
Author(s):  
Fatima A. A. Zanin ◽  
Dilma H. Souza-Campos ◽  
Sissi Zanin ◽  
Aldo Brugnera, Jr. ◽  
Jesus D. Pecora ◽  
...  

2016 ◽  
Vol 5 (2) ◽  
pp. 8
Author(s):  
Putri Ajri Mawadara ◽  
Martha Mozartha ◽  
Trisnawaty K

Hydroxyapatite (HA) is a bioceramic with excellentbiocompatible properties, and composition and crystal structure similar to apatite in the human dental structure and skeletal system. A number of researchers have attempted to evaluate the effect of the addition of HA powders to increasemechanical properties of restorative dental materials. In this study, HA was synthesized using chicken eggshell as calcium source for synthesizing HA by using precipitation technique. The aim of this study was to determine the effect of incorporation of eggshell-derived HA on the surface  hardness GIC (Fuji IX GP). Specimens were divided into two groups: group GIC without incorporation of HA as control group (n = 16) and group GIC with incorporation of 5% HA as experimental group (n = 16). Total of specimens were 32 cylinders 5mm diameter and 2mm height. Surface hardness GIC was measured with vickers microhardness tester. Data wasanalyzed by unpaired T-test. The mean of surface hardness for GIC control group was 51.37 ± 1,63VHN and the experimental group was 56.60 ± 1,22HVN. The results T-test showed a significant difference between groups (p<0.05). It can be concluded thatincorporation of eggshell-derivedHA could increasesurface hardness of GIC.


Dental Update ◽  
2002 ◽  
Vol 29 (4) ◽  
pp. 188-194 ◽  
Author(s):  
F.J.T. Burke ◽  
A.C.C. Shortall ◽  
E.C. Combe ◽  
T.C. Aitchison

2019 ◽  
Vol 38 (3) ◽  
pp. 378-387 ◽  
Author(s):  
Thapanee SRICHUMPONG ◽  
Pimnida PHOKHINCHATCHANAN ◽  
Noparat THONGPUN ◽  
Duangrudee CHAYSUWAN ◽  
Kallaya SUPUTTAMONGKOL

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4093
Author(s):  
Monika Topa ◽  
Joanna Ortyl

The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.


Sign in / Sign up

Export Citation Format

Share Document