scholarly journals Moving Towards a Finer Way of Light-Cured Resin-Based Restorative Dental Materials: Recent Advances in Photoinitiating Systems Based on Iodonium Salts

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4093
Author(s):  
Monika Topa ◽  
Joanna Ortyl

The photoinduced polymerization of monomers is currently an essential tool in various industries. The photopolymerization process plays an increasingly important role in biomedical applications. It is especially used in the production of dental composites. It also exhibits unique properties, such as a short time of polymerization of composites (up to a few seconds), low energy consumption, and spatial resolution (polymerization only in irradiated areas). This paper describes a short overview of the history and classification of different typical monomers and photoinitiating systems such as bimolecular photoinitiator system containing camphorquinone and aromatic amine, 1-phenyl-1,2-propanedione, phosphine derivatives, germanium derivatives, hexaarylbiimidazole derivatives, silane-based derivatives and thioxanthone derivatives used in the production of dental composites with their limitations and disadvantages. Moreover, this article represents the challenges faced when using the latest inventions in the field of dental materials, with a particular focus on photoinitiating systems based on iodonium salts. The beneficial properties of dental composites cured using initiation systems based on iodonium salts have been demonstrated.

Author(s):  
Mara Elena Rusnac ◽  
Cristina Gasparik ◽  
Alexandra Iulia Irimie ◽  
Alexandru Graţian Grecu ◽  
Anca Ştefania Mesaroş ◽  
...  

Introduction. From the variety of direct restorative dental materials, composite resins are considered as having the most esthetic and functional properties. The conservative preparation, esthetic results, good mechanical qualities and surface finishing properties of dental composites, combined with the protective properties of fluoride from glass-ionomers, led to a new generation of dental materials: the giomers. Objective. The purpose is to review the available literature about the giomers, regarding the chemical composition, handling properties and esthetics, adhesion and microleakage, fluoride releasing and protection offered, clinical indications. Method. The search was carried out using ScienceDirect and PubMed databases with the following keywords: giomer, esthetic properties giomers and fluoride releasing giomers. A total of 232 articles were initially selected, with the following inclusion criteria: full text articles, written in English, with topics on the properties and the clinical implications of giomers. Papers presented as abstract were not included.  In the next step, review articles, duplicates, and articles in other languages were removed; as a result, a total of 44 sources published between 2004 and 2017 were selected. Results. The selected articles referred to the following aspects about the giomers: chemical composition (8 articles), adhesion and microleakage (10 articles), fluoride releasing and pulp protection (15 articles), clinical indications (6 articles), effects of additional treatments and dietary habits (11 articles).


Vacuum ◽  
2021 ◽  
pp. 110450
Author(s):  
M. Zarka ◽  
B. Dikici ◽  
M. Niinomi ◽  
K.V. Ezirmik ◽  
M. Nakai ◽  
...  

Author(s):  
Débora Michelle Gonçalves de Amorim ◽  
Aretha Heitor Veríssimo ◽  
Anne Kaline Claudino Ribeiro ◽  
Rodrigo Othávio de Assunção e Souza ◽  
Isauremi Vieira de Assunção ◽  
...  

AbstractTo investigate the impact of radiotherapy on surface properties of restorative dental materials. A conventional resin composite—CRC (Aura Enamel), a bulk-fill resin composite—BFRC (Aura Bulk-fill), a conventional glass ionomer cement—CGIC (Riva self cure), and a resin-modified glass ionomer cement—RMGIC (Riva light cure) were tested. Forty disc-shaped samples from each material (8 mm diameter × 2 mm thickness) (n = 10) were produced according to manufacturer directions and then stored in water distilled for 24 h. Surface wettability (water contact angle), Vickers microhardness, and micromorphology through scanning electron microscopy (SEM) before and after exposition to ionizing radiation (60 Gy) were obtained. The data were statistically evaluated using the two-way ANOVA and Tukey posthoc test (p < 0.05). Baseline and post-radiation values of contact angles were statistically similar for CRC, BFRC, and RMGIC, whilst post-radiation values of contact angles were statistically lower than baseline ones for CGIC. Exposition to ionizing radiation statistically increased the microhardness of CRC, and statistically decreased the microhardness of CGIC. The surface micromorphology of all materials was changed post-radiation. Exposure to ionizing radiation negatively affected the conventional glass ionomer tested, while did not alter or improved surface properties testing of the resin composites and the resin-modified glass ionomer cement tested.


2001 ◽  
Author(s):  
Fatima A. A. Zanin ◽  
Dilma H. Souza-Campos ◽  
Sissi Zanin ◽  
Aldo Brugnera, Jr. ◽  
Jesus D. Pecora ◽  
...  

Author(s):  
Heni Sulistiani ◽  
Ahmad Ari Aldino

In pandemic era, almost everyone struggles for their life. College students are such example. They have difficulty in paying tuition fee to continue their study. Based on this problematic situation, Universitas Teknokrat Indonesia grants the students who have good academic performance with tuition fee aid program. Many variables used for determining the grant made it hard to make a decision in a short time or even takes very long time. To make it easier for management to decide who is the right student to get grant, it needs classification model. The purpose of this study is the classification of grant recipients by using decision tree C4.5 algorithm. That can determine whether a potential student can be accepted as an awardee or not. Then, the results of the classification are validated with ten-fold cross validation with an accuracy, precision and recall with the score of 87 % for all part. It means the model perform quite well to be implemented into system.


2016 ◽  
Vol 5 (2) ◽  
pp. 8
Author(s):  
Putri Ajri Mawadara ◽  
Martha Mozartha ◽  
Trisnawaty K

Hydroxyapatite (HA) is a bioceramic with excellentbiocompatible properties, and composition and crystal structure similar to apatite in the human dental structure and skeletal system. A number of researchers have attempted to evaluate the effect of the addition of HA powders to increasemechanical properties of restorative dental materials. In this study, HA was synthesized using chicken eggshell as calcium source for synthesizing HA by using precipitation technique. The aim of this study was to determine the effect of incorporation of eggshell-derived HA on the surface  hardness GIC (Fuji IX GP). Specimens were divided into two groups: group GIC without incorporation of HA as control group (n = 16) and group GIC with incorporation of 5% HA as experimental group (n = 16). Total of specimens were 32 cylinders 5mm diameter and 2mm height. Surface hardness GIC was measured with vickers microhardness tester. Data wasanalyzed by unpaired T-test. The mean of surface hardness for GIC control group was 51.37 ± 1,63VHN and the experimental group was 56.60 ± 1,22HVN. The results T-test showed a significant difference between groups (p<0.05). It can be concluded thatincorporation of eggshell-derivedHA could increasesurface hardness of GIC.


Dental Update ◽  
2002 ◽  
Vol 29 (4) ◽  
pp. 188-194 ◽  
Author(s):  
F.J.T. Burke ◽  
A.C.C. Shortall ◽  
E.C. Combe ◽  
T.C. Aitchison

Sign in / Sign up

Export Citation Format

Share Document