scholarly journals Phononic band gap and wave propagation on polyvinylidene fluoride-based acoustic metamaterials

2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Oral Oltulu ◽  
Sevket Simsek ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay
2019 ◽  
Vol 539 (1) ◽  
pp. 84-88
Author(s):  
Selami Palaz ◽  
Zafer Ozer ◽  
Oral Oltulu ◽  
Amirullah M. Mamedov ◽  
E. Ozbay

2018 ◽  
Vol 29 (13) ◽  
pp. 2744-2753 ◽  
Author(s):  
Shengbing Chen

Cross-shape piezoelectric patches were originally proposed to improve the band-gap properties of acoustic metamaterials with shunting circuits. The dispersion curves are characterized through the application of finite element method. Also, the theoretical band-gap predictions are verified by simulation results obtained from COMSOL. The investigation results show that the proposed scheme distinguishes itself from the conventional square patches by broader band gaps, whose bandwidth is almost doubled. The inherent capacitance of the piezoelectric patch is strongly related to the boundary conditions, so the local resonant band gap is strongly affected by the shape of piezoelectric patches as well. As a result, the band-gap width and location of metamaterials with different shape patches are rather different, even with the same size patches. Also, negative modulus (NM) and Poisson’s ratio were observed around the resonant frequencies. The transmission properties of finite periods agree well with band-gap predictions. An obvious attenuation zone (AZ) is produced around the band-gap location, in which the wave propagation is decayed strongly. Similarly, the width of AZ of the proposed metamaterial is much larger than that of the conventional one. Hence, the proposed scheme demonstrates more advantages in the application to vibration isolation when compared with the conventional.


Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1457
Author(s):  
Qi Li ◽  
Ke Wu ◽  
Mingquan Zhang

Pentamode metamaterials have been receiving an increasing amount of interest due to their water-like properties. In this paper, a two-dimensional composite pentamode metamaterial of rectangular unit cell is proposed. The unit cells can be classified into two groups, one with uniform arms and the other with non-uniform arms. Phononic band structures of the unit cells were calculated to derive their properties. The unit cells can be pentamode metamaterials that permit acoustic wave travelling or have a total band gap that impedes acoustic wave propagation by varying the structures. The influences of geometric parameters and materials of the composed elements on the effective velocities and anisotropy were analyzed. The metamaterials can be used for acoustic wave control under water. Simulations of materials with different unit cells were conducted to verify the calculated properties of the unit cells. The research provides theoretical support for applications of the pentamode metamaterials.


2013 ◽  
Vol 28 (6) ◽  
pp. 671-676 ◽  
Author(s):  
Yu-Qing ZHANG ◽  
Li-Li ZHAO ◽  
Shi-Long XU ◽  
Chao ZHANG ◽  
Xiao-Ying CHEN ◽  
...  

Author(s):  
S Chung ◽  
S Shrestha ◽  
X Wen ◽  
Y Feng ◽  
N Gupta ◽  
...  

Nanophotonics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 685-701 ◽  
Author(s):  
Yabin Jin ◽  
Bahram Djafari-Rouhani ◽  
Daniel Torrent

AbstractPhononic crystals and acoustic metamaterials are periodic structures whose effective properties can be tailored at will to achieve extreme control on wave propagation. Their refractive index is obtained from the homogenization of the infinite periodic system, but it is possible to locally change the properties of a finite crystal in such a way that it results in an effective gradient of the refractive index. In such case the propagation of waves can be accurately described by means of ray theory, and different refractive devices can be designed in the framework of wave propagation in inhomogeneous media. In this paper we review the different devices that have been studied for the control of both bulk and guided acoustic waves based on graded phononic crystals.


2018 ◽  
Vol 29 (12) ◽  
pp. 2677-2692 ◽  
Author(s):  
Wangbai Pan ◽  
Guoan Tang ◽  
Jiong Tang

Acoustic metamaterials with unit cells that are integrated with piezoelectric transducer circuitry exhibit interesting band gap behaviors that can be used for wave/vibration manipulation. This research reports the evaluation of uncertainty effects to a typical piezoelectric metamaterial, where uncertainties in geometry/configuration and in circuitry elements are taken into consideration. Monte Carlo–type analysis is performed to assess the band gap features under these uncertainties. In order to facilitate tractable computation in uncertainty analysis, order-reduced modeling of the electro-mechanically integrated system is formulated. The component mode synthesis–based order-reduced modeling increases the computational efficiency significantly while maintaining good accuracy. Results show that the band gap behavior is generally less sensitive to configuration uncertainty but can be greatly affected by circuitry parameter uncertainty. These results can be used to guide the design and synthesis of piezoelectric metamaterials, and the method developed can be applied to the uncertainty quantification of other types of metamaterials.


2021 ◽  
pp. 1-34
Author(s):  
Shaowu Ning ◽  
Dongyang Chu ◽  
Fengyuan Yang ◽  
Heng Jiang ◽  
Zhanli Liu ◽  
...  

Abstract The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised of multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned above. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix's material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials.


Sign in / Sign up

Export Citation Format

Share Document