Wave propagation in acoustic metamaterials with resonantly shunted cross-shape piezos

2018 ◽  
Vol 29 (13) ◽  
pp. 2744-2753 ◽  
Author(s):  
Shengbing Chen

Cross-shape piezoelectric patches were originally proposed to improve the band-gap properties of acoustic metamaterials with shunting circuits. The dispersion curves are characterized through the application of finite element method. Also, the theoretical band-gap predictions are verified by simulation results obtained from COMSOL. The investigation results show that the proposed scheme distinguishes itself from the conventional square patches by broader band gaps, whose bandwidth is almost doubled. The inherent capacitance of the piezoelectric patch is strongly related to the boundary conditions, so the local resonant band gap is strongly affected by the shape of piezoelectric patches as well. As a result, the band-gap width and location of metamaterials with different shape patches are rather different, even with the same size patches. Also, negative modulus (NM) and Poisson’s ratio were observed around the resonant frequencies. The transmission properties of finite periods agree well with band-gap predictions. An obvious attenuation zone (AZ) is produced around the band-gap location, in which the wave propagation is decayed strongly. Similarly, the width of AZ of the proposed metamaterial is much larger than that of the conventional one. Hence, the proposed scheme demonstrates more advantages in the application to vibration isolation when compared with the conventional.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3812 ◽  
Author(s):  
Heng Jiang ◽  
Mangong Zhang ◽  
Yu Liu ◽  
Dongliang Pei ◽  
Meng Chen ◽  
...  

Elastic metamaterials have promising applications in wave control and vibration isolation, due to their extraordinary characteristics, e.g., negative Poisson ratio, band gaps, effective negative mass density and effective negative modulus. How to develop new functional metamaterials using a special structure has always been a hot topic in this field. In this study, a three-dimensional (3D) star structure is designed to construct metamaterials with both negative static and dynamic properties. The results show that the 3D star structure formed a wide band gap at lower frequency and had a negative Poisson’s ratio. Different from conventional acoustic metamaterials, the main physical mechanism behind the low-frequency band gap of the 3D star structure is the resonance mode formed by the bending deformation of each rib plate, which made it easier to achieve effective isolation of low-frequency elastic waves with a low mass density. In addition, many structural parameters of the 3D star structure can be modulated to effectively adjust the band gap frequency by changing the angle between the concave nodes and aspect ratio. This study provides a new way to design the 3D acoustic metamaterials and develop the lightweight vibration isolation devices.





2021 ◽  
pp. 1-34
Author(s):  
Shaowu Ning ◽  
Dongyang Chu ◽  
Fengyuan Yang ◽  
Heng Jiang ◽  
Zhanli Liu ◽  
...  

Abstract The characteristics of passive responses and fixed band gaps of phononic crystals (PnCs) limit their possible applications. For overcoming this shortcoming, a class of tunable PnCs comprised of multiple scatterers and soft periodic porous elastomeric matrices are designed to manipulate the band structures and directionality of wave propagation through the applied deformation. During deformation, some tunable factors such as the coupling effect of scatterer and hole in the matrix, geometric and material nonlinearities, and the rearrangement of scatterer are activated by deformation to tune the dynamic responses of PnCs. The roles of these tunable factors in the manipulation of dynamic responses of PnCs are investigated in detail. The numerical results indicate that the tunability of the dynamic characteristic of PnCs is the result of the comprehensive function of these tunable factors mentioned above. The strong coupling effect between the hole in the matrix and the scatterer contributes to the formation of band gaps. The geometric nonlinearity of matrix and rearrangement of scatterer induced by deformation can simultaneously tune the band gaps and the directionality of wave propagation. However, the matrix's material nonlinearity only adjusts the band gaps of PnCs and does not affect the directionality of wave propagation in them. The research extends our understanding of the formation mechanism of band gaps of PnCs and provides an excellent opportunity for the design of the optimized tunable PnCs and acoustic metamaterials.



2014 ◽  
Vol 556-562 ◽  
pp. 177-180
Author(s):  
Fu Chun Zhang ◽  
Hong Wei Cui ◽  
Xing Xiang Ruan ◽  
Wei Hu Zhang

Geometric structure and electronic structures of Zn1-xMgxO alloy under different Mg doped concentrations have been investigated by performing the first-principle calculations based on density functional theory under the generalized gradient approximation (GGA). The calculated results show that there is substantial change in electronic structure of Mg doped MgxZn1-xO alloy, with the constant increase of Mg content, cell parameter a shall be on the gradual increase, with c on gradual decrease and band gap width of MgxZn1-xO alloy on the increase. The research findings show that the position of conduction band bottom is dependent on Mg 2p and Zn 4s. Mg doping results in drift of Mg 2p and Zn 4s toward high energy region, being the root cause for the increase in band gap width,the research results in the paper are in accordance with other experimental results. The above results provide theoretical guidance to the preparation of Zn1-xMgxO alloy in experiment.



2014 ◽  
Vol 576 ◽  
pp. 27-31
Author(s):  
Gai Mei Zhang ◽  
Can Wang ◽  
Yan Jun Guo ◽  
Wang Wei ◽  
Xiao Xiang Song

The photonic crystal has the property that electromagnetic waves with interval of frequency in photonic band gap (PBG) can not be propagated, so it has important applying and researching value. The traditional one-dimensional photonic crystal is with narrow band gap width, and the reflection within the band is small, especially the band gap is sensitive to the incident angle and the polarization of light. A new photonic band gap (PBG) structure, metallodielectric photonic crystal by inserting metal film in the medium can overcomes the shortcomings mentioned above. The one-dimensional Ag/SiOx photonic crystal was prepared, and theoretical and experimental researches were developed. The results show that photonic band gap appears gradually and the band gap width increase with increasing of period of repeating thickness. With the thickness of Ag film increasing, the band gap width increases, but the starting wavelength of the photonic band gap keeps unchanged. With thickness of SiOx film increasing, the band gap width of photonic band gap also increases, but it is not obvious and starting wavelength increases.



2016 ◽  
Vol 3 (1) ◽  
Author(s):  
Oral Oltulu ◽  
Sevket Simsek ◽  
Amirullah M. Mamedov ◽  
Ekmel Ozbay


Author(s):  
Kin Hung Fung ◽  
Zhengyou Liu ◽  
Che Ting Chan

AbstractUsing multiple-scattering theory, we studied the transmission properties of a slab of composite material that have sonic band gaps due to local resonances. Thin slabs of such material have transmission properties that are apparently different from conventional band gap material. For example, there can be transmission peaks in the frequency range inside the bulk sonic band gap. If the slab thickness is changed, we found that the top of band gap shifts while the bottom of band gap, being pinned by the resonance frequency, does not. By changing the slab thickness, the “effective band gap” may be narrowed or broadened, depending on the filling fraction of the locally resonant units. In order to provide an intuitive understanding of the phenomena, we constructed a simple model to understand the phenomena by comparing its transmission and band structure with that of the locally resonant sonic materials.



Crystals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1457
Author(s):  
Qi Li ◽  
Ke Wu ◽  
Mingquan Zhang

Pentamode metamaterials have been receiving an increasing amount of interest due to their water-like properties. In this paper, a two-dimensional composite pentamode metamaterial of rectangular unit cell is proposed. The unit cells can be classified into two groups, one with uniform arms and the other with non-uniform arms. Phononic band structures of the unit cells were calculated to derive their properties. The unit cells can be pentamode metamaterials that permit acoustic wave travelling or have a total band gap that impedes acoustic wave propagation by varying the structures. The influences of geometric parameters and materials of the composed elements on the effective velocities and anisotropy were analyzed. The metamaterials can be used for acoustic wave control under water. Simulations of materials with different unit cells were conducted to verify the calculated properties of the unit cells. The research provides theoretical support for applications of the pentamode metamaterials.



2019 ◽  
Vol 126 (4) ◽  
pp. 428
Author(s):  
А.С. Мясникова ◽  
А.И. Богданов

AbstractThe results of nonempirical quantum chemical calculations of CaF_2, SrF_2, and BaF_2 crystals that were activated by In^3+ and Ga^3+ ions have been presented. The calculations were performed in the framework of density functional theory using the VASP software complex. The estimation of the width of the band gap of defect-free crystals have been carried out by different methods and the influence of impurity ions on the band gap width has been estimated as well as the possibility of getting rid of shallow traps by introducing an impurity of indium or gallium has been investigated.



Sign in / Sign up

Export Citation Format

Share Document