Probabilistic contact force model for low velocity impact on honeycomb structure

2018 ◽  
Vol 4 (2) ◽  
pp. 51-65
Author(s):  
Sai Sharath Parsi ◽  
Anupoju Rajeev ◽  
Ahsan Uddin ◽  
Amit Shelke ◽  
Nasim Uddin
2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manar Hamid Jasim ◽  
Ali Mohammad Ali Al-Araji ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Mehdi Ranjbar

PurposeIn the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.Design/methodology/approachThe nonlinear Hertz contact law is applied to identify the contact between projectile and beam. The energy method, Lagrange's equations and Ritz method are applied to derive the nonlinear governing equation of the beam and impactor-associated boundary condition. The motion equations are then solved simultaneously by the Runge–Kutta fourth-order method.FindingsAlso, a comparison is performed to validate the model predictions. The contact force and beam indentation histories of the jute–epoxy simply supported beam under spherical impactor with different radius and initial velocity are investigated in detail. It is found that in response to impactor radius increase, the utilization of the contact force law has resulted in a same increasing trend of peak contact force, impact duration and beam indentation, while in response to impactor initial velocity increase, the maximum contact force and beam indentation increase while impact time has vice versa trend.Originality/valueThis paper fulfills an identified need to study how jute–epoxy beam behavior with simply supported boundary conditions under low-velocity impact can be enabled.


2013 ◽  
Vol 26 (2) ◽  
pp. 116-122 ◽  
Author(s):  
Jin Woo Kim ◽  
Cheon Won ◽  
Dong Woo Lee ◽  
Byung Sun Kim ◽  
Sung In Bae ◽  
...  

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Raed Salman Saeed Alhusseini ◽  
Ali Sadik Gafer Qanber ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
Mehdi Ranjbar

Purpose This paper aims to present the potential of using aligned single-layer graphene sheets to reinforce the methyl methacrylate cantilever beam in low-velocity impact problem. Design/methodology/approach The Halpin–Tsai law is applied to compute the mechanical properties of isotropic polymer beam reinforced by aligned graphene sheet. Using both longitudinal and lateral displacements in composite beam, all components of the stress and strain fields are written. The equations of motion are derived by applying energy method, generalized Lagrange equations and Ritz method. Findings The analytical formulation accuracy is corroborated by comparing the present results with those available in the literature. Numerical examples indicate that the contact duration is decreased with increasing of graphene volume fraction, whereas the values of peak contact force, shear strain and shear stress at peak contact force tend to be vice versa. Also, among the results, shear stress at the peak contact force has the most effect with graphene volume fraction changes. Originality/value This research fulfils an identified need to investigate how graphene-reinforced beam behavior subjected to low-velocity impact can be enabled.


2004 ◽  
Vol 261-263 ◽  
pp. 283-288 ◽  
Author(s):  
Hoon Cheol Park ◽  
Jung Park ◽  
Nam Seo Goo ◽  
Kwang Joon Yoon ◽  
Jae Hwa Lee

Low-velocity impact on composite sandwich panels has been investigated. The contact force is computed from a proposed modified Hertzian contact law. In the proposed contact law, the exponent is adjusted and the through-the-thickness elastic constant of honeycomb core is reduced properly to approximately predict the measured contact force-time history during the impact. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds, especially for thick sandwich plates.


2018 ◽  
Vol 22 (4) ◽  
pp. 962-990 ◽  
Author(s):  
A Khalkhali ◽  
N Geran Malek ◽  
M Bozorgi Nejad

In this study, non-linear low-velocity impact response of a simply supported sandwich plate with CNTRC face sheets subjected to the impactors with different geometrical shapes is investigated. It has been assumed that the sandwich plate is made up of two face sheets reinforced with CNTs graded along their thickness as X profile and a homogeneous core. In CNT-reinforced layers, a micromechanical model has been used to obtain the effective material properties and the analysis is performed in the framework of the Reddy's higher order shear deformation theory with regard to thermal effects. An analytical model is proposed to capture the response performance of the three-layer sandwich plates under different thermal environments. Through the proposed analytical study, in order to characterize the contact force between the sandwich plate and the impactors, the modified Hertz contact law is utilized. Rayleigh-Ritz method is applied to the Hamilton principle in order to find the set of equations of motion for the impactor as well as the CNTRC sandwich plate. Afterwards, the solution in the time domain is obtained based on Newmark's numerical time integration scheme. After validating the proposed approach, in order to examine the influences of various involved parameters, different parametric studies are conducted. It has been demonstrated that the variation of the initial kinetic energy as one of the parameters under study has a significant effect on the central displacement, contact force, and indentation in both conical and cylindrical impactors and the change in the radius of the cylinder has an insignificant effect on the central displacement. As well, in the case of equal masses, the cylindrical impactor causes more amount of indentation with respect to conical.


2014 ◽  
Vol 627 ◽  
pp. 353-356
Author(s):  
Z. Shen ◽  
Y.G. Xu ◽  
Andreas Chrysanthou

A major concern affecting the efficient use of carbon fibre reinforced composite laminates in the aerospace industry is the low velocity impact damage which may be introduced accidentally during manufacture, operation or maintenance of the composite structures. It is widely reported that the contact behavior of composite laminates under low-velocity impact can be obtained under quasi-static loading conditions. This paper focuses on the study of the correlation of the dent depth to the maximum contact force and damage of composite laminates under quasi-static loading. Analytical and finite element simulation approaches were employed to investigate relations between the contact force and the dent depth. Experimental investigations on the correlation between dent depth, maximum contact force and damage include quasi-static indentation testing, optical and scanning electron microscopic examination of the damage under different loading levels. The effect of damage initiation and growth on the contact behaviour has been discussed. Results show that consistent correlations between the dent depth, maximum contact force and damage exist and can be predicted with the analytical and numerical approaches. Dent depth can be used as an engineering parameter in assessing the severity of damage for composite structures that are subjected to low-velocity impact. This may lead to the development of a cost-effective technique for the inspection and maintenance of composite structures in aerospace applications.


2020 ◽  
Vol 54 (21) ◽  
pp. 2999-3007
Author(s):  
Hüseyin E Yalkın ◽  
Ramazan Karakuzu ◽  
Tuba Alpyıldız

The aim of the study is to investigate the behavior of laminated composites under low velocity impact both experimentally and numerically. With this aim, the effects of wide range impact energy values between 10 J and 60 J were evaluated experimentally and numerically for the laminate of [±45/(0/90)2]S oriented unidirectional E-glass as reinforcing material and epoxy resin for matrix material. Different impactor velocities were used to maintain the impact energy values and experimental impact tests were generated with drop weight impact testing machine at room temperature. Numerical simulations were performed using LS-DYNA finite element analysis software with a continuum damage mechanics-based material model MAT058. Contact force between impactor and laminate, and transverse deflection at the center of laminate results were obtained as a function of time and used to plot contact force–time curves, contact force–deflection curves and absorbed energy-impact energy curves. Also, delamination area was examined. Finally, numerical results were compared with experimental results and a good correlation between them was observed.


Author(s):  
M Rasoolpoor ◽  
R Ansari ◽  
MK Hassanzadeh-Aghdam

The main purpose of this work is to investigate low velocity impact behavior of metal matrix nanocomposite plates reinforced with silicon carbide nanoscale particles. First, a micromechanical model is proposed to predict the effective mechanical properties of metal matrix nanocomposites. Two features of the nanocomposite microstructure affecting the elastic properties, including agglomerated state of silicon carbide nanoparticles and size factor, are taken into account in the micromechanical simulation. Then, finite element method is used to analyze the time histories of contact force and center deflection of silicon carbide nanoparticle-reinforced metal matrix nanocomposite plates. Several detailed parametric studies are accomplished to explore the influence of volume fraction, diameter and dispersion type of silicon carbide nanoparticles, spherical impactor velocity and diameter, plate dimensions, as well as different boundary conditions on the dynamic response of metal matrix nanocomposite plates. The presented approach accuracy is verified with the available open literature results displaying a clear agreement. The results indicate that adding the silicon carbide nanoparticles into the metal matrix materials leads to a reduction in plate center deflection and an increase in contact force between the plate and projectile. Moreover, it is found that the nanoparticle agglomeration dramatically decreases the contact force and increases the center deflection of metal matrix nanocomposite plates.


Sign in / Sign up

Export Citation Format

Share Document