Analytical analysis of jute–epoxy beams subjected to low-velocity impact loading

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Manar Hamid Jasim ◽  
Ali Mohammad Ali Al-Araji ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Mehdi Ranjbar

PurposeIn the article, analytical model of first-order shear deformation (FSDT) beams made of jute–epoxy is presented to study the low-velocity impact response.Design/methodology/approachThe nonlinear Hertz contact law is applied to identify the contact between projectile and beam. The energy method, Lagrange's equations and Ritz method are applied to derive the nonlinear governing equation of the beam and impactor-associated boundary condition. The motion equations are then solved simultaneously by the Runge–Kutta fourth-order method.FindingsAlso, a comparison is performed to validate the model predictions. The contact force and beam indentation histories of the jute–epoxy simply supported beam under spherical impactor with different radius and initial velocity are investigated in detail. It is found that in response to impactor radius increase, the utilization of the contact force law has resulted in a same increasing trend of peak contact force, impact duration and beam indentation, while in response to impactor initial velocity increase, the maximum contact force and beam indentation increase while impact time has vice versa trend.Originality/valueThis paper fulfills an identified need to study how jute–epoxy beam behavior with simply supported boundary conditions under low-velocity impact can be enabled.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Raed Salman Saeed Alhusseini ◽  
Ali Sadik Gafer Qanber ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
Mehdi Ranjbar

Purpose This paper aims to present the potential of using aligned single-layer graphene sheets to reinforce the methyl methacrylate cantilever beam in low-velocity impact problem. Design/methodology/approach The Halpin–Tsai law is applied to compute the mechanical properties of isotropic polymer beam reinforced by aligned graphene sheet. Using both longitudinal and lateral displacements in composite beam, all components of the stress and strain fields are written. The equations of motion are derived by applying energy method, generalized Lagrange equations and Ritz method. Findings The analytical formulation accuracy is corroborated by comparing the present results with those available in the literature. Numerical examples indicate that the contact duration is decreased with increasing of graphene volume fraction, whereas the values of peak contact force, shear strain and shear stress at peak contact force tend to be vice versa. Also, among the results, shear stress at the peak contact force has the most effect with graphene volume fraction changes. Originality/value This research fulfils an identified need to investigate how graphene-reinforced beam behavior subjected to low-velocity impact can be enabled.


2020 ◽  
Vol 17 (1) ◽  
pp. 1-17
Author(s):  
Ali Sadik Gafer Qanber ◽  
Raed Salman Saeed Alhusseini ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
Mehdi Ranjbar

PurposeThe main objective of this article is to develop a theoretical formulation for predicting the response of CNTs reinforced beam under multiple impactors with general boundary conditions, using first-order shear deformation beam theory.Design/methodology/approachThe rule of mixtures is implemented to derive the material properties of the beam. The nonlinear Hertz contact law is applied for simulation between impactors and the surface of the beam. A combination of approaches includes energy method, Ritz method and generalized Lagrange equations are used to extract the matrix form of equations of motion. The time-domain solution is obtained using implementing the well-known Runge Kutta 4th order method.FindingsAfter examining the accuracy of the present method, the effects of the number of impactors include one impactor, and three impactors in various CNTs volume fraction are studied for CNTs reinforced beam with clamped-clamped, clamped-free and simply supported boundary conditions under the low-velocity impact. The most important finding of this article is that contact force and beam indentation at the middle of the beam in the case of one impactor are greater than those reported in the case of three impactors.Originality/valueThis article fulfills an identified need to study how CNTs reinforced beam behaviour with general boundary conditions under multiple low-velocity impacts can be enabled.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Salih Hassan ◽  
Haideer Taleb Shomran ◽  
Abbas Allawi Abbas ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
...  

Purpose The purpose of this paper is to investigate the effect of graphene platelets (GPLs) on the low-speed contact between a mass and surface of a multi-layer polymer beam. Design/methodology/approach This problem is primarily organized by first-order shear deformation beam theory and nonlinear Hertz rule. GPLs are distributed along the beam thickness direction. The Halpin–Tsai micromechanics model is applied for computing the effective Young’s modulus of the GPLs/polymer composites. In the formulation process, the principle of conservation of energy is first used and the histories of results are extracted using the separation of variables and Runge–Kutta method. Findings In comparing the responses with the available data, a good agreement is observed. The effects of the weight fraction and distribution pattern on the impact response of polymer beam reinforced with GPLs are studied. Results show that contact force is increased, contact time and beam recess are decreased with increasing of weight fraction of GPLs. Also, among the different distribution patterns, the contact force depended on value of GPLs at the point of contact. Originality/value The effects of GPLs addition on the multi-layer polymer beam has a novelty in impact problems.


2018 ◽  
Vol 48 (6) ◽  
pp. 1009-1023 ◽  
Author(s):  
Xiaozhou Gong ◽  
Pengying Pei ◽  
Yu Hu ◽  
Xiaogang Chen

Cellular composite, with an array of regular hexagonal cells in the cross section, is a type of textile composites having the advantage of being light weight and energy absorbent over the solid composite materials. However, when it is under the same energy level of low velocity impact with different tup mass and velocity, its behavior is yet unknown. In the experiment, four groups of samples, with twelve geometrical variants have been systematically created for the impact testing. The impact test is running in two categories with one type of low velocity impact with initial velocity of 5.5 m/s by the tup mass of 0.55 kg, and another testing under the similar impact energy but with a lower initial velocity around 2.0 m/s with heavier tup mass of 4.52 kg. The impact energies in the above cases are very similar about 8.5 J, which indicates that the impact energy is the same while the energy construction is different. After the test, it is found that composite with medium cell size has more stable mechanical performances under various exposed impact conditions. It is also concluded that composites with big cell size are much easier to be destroyed under heavier impact tup, therefore, under condition of more critical loading force, it is necessary to find a way to enhance the big cell sized composites’ wall material in order to strengthen their structure performances. The results of this work provide a reference for the researchers who are kneeing to investigate the impact mechanism of textile cellular composites.


2018 ◽  
Vol 4 (2) ◽  
pp. 51-65
Author(s):  
Sai Sharath Parsi ◽  
Anupoju Rajeev ◽  
Ahsan Uddin ◽  
Amit Shelke ◽  
Nasim Uddin

Author(s):  
Apurba Das ◽  
Ranojit Banerjee ◽  
Amit Karmakar

This paper investigates on the problem of functionally graded (FG) shallow conical shells subjected to low-velocity impact by a solid spherical mass at the centre. Turbomachinery blades with low aspect ratio could be idealized as twisted rotating cantilever FG shallow conical shells. An analytic solution method is developed to solve and predict the impact response in terms of contact force, impactor displacement, initial velocity of impactor, target displacement and indentation of the FG conical shells with different sigmoidal power law exponent. A modified Hertzian contact law considering permanent indentation is used to calculate the contact force along with other impact response parameters. Using the Newmark’s time integration scheme the time dependent equations are solved. An eight noded isoparametric shell element is considered for the present finite element model. Parametric studies are performed to study the effects of triggering parameters like initial velocity of impactor (VOI), mass of the impactor (M0) and twist angle (Ψ) considering different sigmoidal power law exponent (N) for Ni (Nickel)-ZrO2 (Zirconia) and Ti (Titanium alloy-Ti–6Al–4V)-ZrO2 (Zirconia) functionally graded conical shell subjected to low velocity impact.


2004 ◽  
Vol 261-263 ◽  
pp. 283-288 ◽  
Author(s):  
Hoon Cheol Park ◽  
Jung Park ◽  
Nam Seo Goo ◽  
Kwang Joon Yoon ◽  
Jae Hwa Lee

Low-velocity impact on composite sandwich panels has been investigated. The contact force is computed from a proposed modified Hertzian contact law. In the proposed contact law, the exponent is adjusted and the through-the-thickness elastic constant of honeycomb core is reduced properly to approximately predict the measured contact force-time history during the impact. The equivalent transverse elastic constant is calculated from the rule of mixture. Nonlinear equation to calculate the contact force is solved by the Newton-Raphson method and time integration is done by the Newmark-beta method. A finite element program for the low-velocity impact analysis is coded by implementing these techniques and an 18-node assumed strain solid element. Behaviors of composite sandwich panels subjected to low-velocity impact are analyzed for various cases with different geometry and lay-ups. It has been found that the present code with the proposed contact law can predict measured contact forces and contact times for most cases within reasonable error bounds, especially for thick sandwich plates.


2019 ◽  
Vol 11 (5) ◽  
pp. 670-685 ◽  
Author(s):  
Konstantinos Stamoulis ◽  
Stelios K. Georgantzinos ◽  
G.I. Giannopoulos

Purpose The present study deals with the numerical modeling of the low-velocity impact damage of laminated composites which have increasingly important applications in aerospace primary structures. Such damage, generated by various sources during ground handling, substantially reduces the mechanical residual performance and the safe-service life. The purpose of this paper is to present and validate a computationally efficient approach in order to explore the effect of critical parameters on the impact damage characteristics. Design/methodology/approach Numerical modeling is considered as one of the most efficient tool as compared to the expensive and time-consuming experimental testing. In this paper, a finite element model based on explicit dynamics formulations is adopted. Hashin criterion is applied to predict the intralaminar damage initiation and evolution. The numerical analysis is performed using the ABAQUS® programme. Findings The employed modeling approach is validated using corresponding numerical data found in the literature and the presented results show a reasonable correlation to the available literature data. It is demonstrated that the current model can be used to capture the force-time response as well as damage parameter maps showing the intralaminar damage evolution for different impact cases with respect to the physical boundary conditions and a range of impact energies. Originality/value Low-velocity impact damage of laminated composites is still not well understood due to the complexity and non-linearity of the damage zone. The presented model is used to predict the force-time response which is considered as one of the most important parameters influencing the structural integrity. Furthermore, it is used for capturing the damage shape evolution, exhibiting a high degree of capability as a damage assessment computational tool.


1996 ◽  
Vol 07 (06) ◽  
pp. 837-855 ◽  
Author(s):  
FERENC KUN ◽  
HANS J. HERRMANN

We study the phenomena associated with the low-velocity impact of two solid discs of equal size using a cell model of brittle solids. The fragment ejection exhibits a jet-like structure the direction of which depends on the impact parameter. We obtain the velocity and the mass distribution of the debris. Varying the radius and the initial velocity of the colliding particles, the velocity components of the fragments show anomalous scaling. The mass distribution follows a power law in the region of intermediate masses.


Sign in / Sign up

Export Citation Format

Share Document