scholarly journals Water sources during drought period in a Savanna wildlife ecosystem, northern Zimbabwe

Author(s):  
Jeremiah Chakuya ◽  
Roseline Mandisodza-Chikerema ◽  
Patmore Ngorima ◽  
Augustine Malunga
Keyword(s):  
1995 ◽  
Vol 31 (11) ◽  
pp. 41-48 ◽  
Author(s):  
G. Izaguirre ◽  
W. D. Taylor

The California Aqueduct supplies water from Northern California to Southern California, dividing into the West and East branches above Pyramid Lake. In July and August 1990, elevated geosmin levels (10-48 ng/l) occurred in the East Branch of the aqueduct, which extends along the southern edge of the Mojave Desert. The geosmin episode was associated with attached algal growths on the sides of the aqueduct. A geosmin-producing cyanobacterium, possibly a Microcoleus sp., was isolated from both water and periphyton. In the summer of 1991, elevated levels of 2-methylisoborneol (MIB) occurred in the East Branch of the aqueduct (up to 78 ng/l), along with lower levels of geosmin. In July 1992, a recurrence of MIB production led to a severe off-flavor problem for a water agency that receives water directly from the aqueduct, resulting in numerous complaints from consumers. In both episodes, a Lyngbya sp. was isolated from periphyton and mud collected near the water's edge. These isolates were strong MIB producers in culture, yielding 240 and 260 μg/l, respectively. Beginning in 1992, a second, relatively weak MIB producer, a Hyella sp., was isolated from membrane-filter plates inoculated with aqueduct water. These off-flavor episodes - associated with low flows during a drought period - showed that previously untainted water sources can be affected by these problems when conditions change.


Author(s):  
Alexey Shcherbakov ◽  
Valentin Zhezmer

Department of hydraulic engineering and hydraulics FGBNU «VNIIGiM them. A.N. Kostyakova «has a long history. For many years, the department’s staff has been such scientists and water engineers with extensive experience as M.A. Volynov, V.S. Verbitsky, S.S. Medvedev, N.V. Lebedev, B.C. Panfilov, T.G. Voynich-Syanozhentsky, V.A. Golubkova, G.V. Lyapin and others. The department solved a wide range of tasks, the main areas of research were the following: – theoretical and applied hydrodynamics and hydraulics, with reference to the open channel flows that affect the state and level of safety of the hydraulic structures; – integrated use and protection of water bodies – water sources and water sources of water resources used in land reclamation; – development of measures and technical solutions for the protection of objects from the negative effects of water; – theoretical substantiation of works to improve the safety level of the GTS (declaration); – development and implementation of digitalization methods for solving design, construction, operation and control of landreclamation facilities. Currently, promising areas of research is the development of a decision-making algorithm in the designation of measures to rationalize the provision of resources to water amelioration. The algorithm is developed on the basis of a detailed study, systematization and processing of data both on safety and on the efficiency of systems and structures, ensuring the delivery of irrigation water of the required quality and in sufficient quantity from a water source to the field.


Waterlines ◽  
1983 ◽  
Vol 1 (4) ◽  
pp. 22-25
Author(s):  
Louise Fortmann
Keyword(s):  

Waterlines ◽  
1994 ◽  
Vol 13 (2) ◽  
pp. 28-31 ◽  
Author(s):  
Astier Almedom ◽  
Christian Odhiambo
Keyword(s):  

2016 ◽  
Vol 1 (6) ◽  
pp. 311-317
Author(s):  
Nada Sasakova ◽  
Gabriela Gregova ◽  
Jan Venglovsky ◽  
Ingrid Papajova ◽  
Bozena Nowakowicz-Debek ◽  
...  

Author(s):  
Ondrej Ledvinka ◽  
◽  
Pavel Coufal ◽  

The territory of Czechia currently suffers from a long-lasting drought period which has been a subject of many studies, including the hydrological ones. Previous works indicated that the basin of the Morava River, a left-hand tributary of the Danube, is very prone to the occurrence of dry spells. It also applies to the development of various hydrological time series that often show decreases in the amount of available water. The purpose of this contribution is to extend the results of studies performed earlier and, using the most updated daily time series of discharge, to look at the situation of the so-called streamflow drought within the basin. 46 water-gauging stations representing the rivers of diverse catchment size were selected where no or a very weak anthropogenic influences are expected and the stability and sensitivity of profiles allow for the proper measurement of low flows. The selected series had to cover the most current period 1981-2018 but they could be much longer, which was considered beneficial for the next determination of the development direction. Various series of drought indices were derived from the original discharge series. Specifically, 7-, 15- and 30-day low flows together with deficit volumes and their durations were tested for trends using the modifications of the Mann– Kendall test that account for short-term and long-term persistence. In order to better reflect the drivers of streamflow drought, the indices were considered for summer and winter seasons separately as well. The places with the situation critical to the future water resources management were highlighted where substantial changes in river regime occur probably due to climate factors. Finally, the current drought episode that started in 2014 was put into a wider context, making use of the information obtained by the analyses.


Author(s):  
Krum Videnov ◽  
Vanya Stoykova

Monitoring water levels of lakes, streams, rivers and other water basins is of essential importance and is a popular measurement for a number of different industries and organisations. Remote water level monitoring helps to provide an early warning feature by sending advance alerts when the water level is increased (reaches a certain threshold). The purpose of this report is to present an affordable solution for measuring water levels in water sources using IoT and LPWAN. The assembled system enables recording of water level fluctuations in real time and storing the collected data on a remote database through LoRaWAN for further processing and analysis.


2019 ◽  
Author(s):  
Luke Skala ◽  
Anna Yang ◽  
Max Justin Klemes ◽  
Leilei Xiao ◽  
William Dichtel

<p>Executive summary: Porous resorcinarene-containing polymers are used to remove halomethane disinfection byproducts and 1,4-dioxane from water.<br></p><p><br></p><p>Disinfection byproducts such as trihalomethanes are some of the most common micropollutants found in drinking water. Trihalomethanes are formed upon chlorination of natural organic matter (NOM) found in many drinking water sources. Municipalities that produce drinking water from surface water sources struggle to remain below regulatory limits for CHCl<sub>3</sub> and other trihalomethanes (80 mg L<sup>–1</sup> in the United States). Inspired by molecular CHCl<sub>3</sub>⊂cavitand host-guest complexes, we designed a porous polymer comprised of resorcinarene receptors. These materials show higher affinity for halomethanes than a specialty activated carbon used for trihalomethane removal. The cavitand polymers show similar removal kinetics as activated carbon and have high capacity (49 mg g<sup>–1</sup> of CHCl<sub>3</sub>). Furthermore, these materials maintain their performance in real drinking water and can be thermally regenerated under mild conditions. Cavitand polymers also outperform activated carbon in their adsorption of 1,4-dioxane, which is difficult to remove and contaminates many public water sources. These materials show promise for removing toxic organic micropollutants and further demonstrate the value of using supramolecular chemistry to design novel absorbents for water purification.<br></p>


Sign in / Sign up

Export Citation Format

Share Document