EFFECT OF ELEVATED IRON ON ULTRAVIOLET LIGHT-ABSORBING COMPOUNDS OF CUCUMBER COTYLEDON AND LEAF TISSUES

2001 ◽  
Vol 24 (2) ◽  
pp. 297-311 ◽  
Author(s):  
Charles R. Caldwell
Author(s):  
Edward D. De-Lamater ◽  
Eric Johnson ◽  
Thad Schoen ◽  
Cecil Whitaker

Monomeric styrenes are demonstrated as excellent embedding media for electron microscopy. Monomeric styrene has extremely low viscosity and low surface tension (less than 1) affording extremely rapid penetration into the specimen. Spurr's Medium based on ERL-4206 (J.Ultra. Research 26, 31-43, 1969) is viscous, requiring gradual infiltration with increasing concentrations. Styrenes are soluble in alcohol and acetone thus fitting well into the usual dehydration procedures. Infiltration with styrene may be done directly following complete dehydration without dilution.Monomeric styrenes are usually inhibited from polymerization by a catechol, in this case, tertiary butyl catechol. Styrene polymerization is activated by Methyl Ethyl Ketone peroxide, a liquid, and probably acts by overcoming the inhibition of the catechol, acting as a source of free radical initiation.Polymerization is carried out either by a temperature of 60°C. or under ultraviolet light with wave lengths of 3400-4000 Engstroms; polymerization stops on removal from the ultraviolet light or heat and is therefore controlled by the length of exposure.


Author(s):  
G. F. Rempfer

In photoelectron microscopy (PEM), also called photoemission electron microscopy (PEEM), the image is formed by electrons which have been liberated from the specimen by ultraviolet light. The electrons are accelerated by an electric field before being imaged by an electron lens system. The specimen is supported on a planar electrode (or the electrode itself may be the specimen), and the accelerating field is applied between the specimen, which serves as the cathode, and an anode. The accelerating field is essentially uniform except for microfields near the surface of the specimen and a diverging field near the anode aperture. The uniform field forms a virtual image of the specimen (virtual specimen) at unit lateral magnification, approximately twice as far from the anode as is the specimen. The diverging field at the anode aperture in turn forms a virtual image of the virtual specimen at magnification 2/3, at a distance from the anode of 4/3 the specimen distance. This demagnified virtual image is the object for the objective stage of the lens system.


Author(s):  
William W. Thomson ◽  
Elizabeth S. Swanson

The oxidant air pollutants, ozone and peroxyacetyl nitrate, are produced in the atmosphere through the interaction of light with nitrogen oxides and gaseous hydrocarbons. These oxidants are phytotoxicants and are known to deleteriously affect plant growth, physiology, and biochemistry. In many instances they induce changes which lead to the death of cells, tissues, organs, and frequently the entire plant. The most obvious damage and biochemical changes are generally observed with leaves.Electron microscopic examination of leaves from bean (Phaseolus vulgaris L.) tobacco (Nicotiana tabacum L.) and cotton (Gossipyum hirsutum L.) fumigated for .5 to 2 hours with 0.3 -1 ppm of the individual oxidants revealed that changes in the ultrastructure of the cells occurred in a sequential fashion with time following the fumigation period. Although occasional cells showed severe damage immediately after fumigation, the most obvious change was an enhanced clarity of the cell membranes.


Author(s):  
K. Shankar Narayan ◽  
Kailash C. Gupta ◽  
Tohru Okigaki

The biological effects of short-wave ultraviolet light has generally been described in terms of changes in cell growth or survival rates and production of chromosomal aberrations. Ultrastructural changes following exposure of cells to ultraviolet light, particularly at 265 nm, have not been reported.We have developed a means of irradiating populations of cells grown in vitro to a monochromatic ultraviolet laser beam at a wavelength of 265 nm based on the method of Johnson. The cell types studies were: i) WI-38, a human diploid fibroblast; ii) CMP, a human adenocarcinoma cell line; and iii) Don C-II, a Chinese hamster fibroblast cell strain. The cells were exposed either in situ or in suspension to the ultraviolet laser (UVL) beam. Irradiated cell populations were studied either "immediately" or following growth for 1-8 days after irradiation.Differential sensitivity, as measured by survival rates were observed in the three cell types studied. Pattern of ultrastructural changes were also different in the three cell types.


Author(s):  
K. S. Zaychuk ◽  
M. H. Chen ◽  
C. Hiruki

Wheat spot mosaic (WSpM), which frequently occurs with wheat streak mosaic virus was first reported in 1956 from Alberta. Singly isolated, WSpM causes chlorotic spots, chlorosis, stunting, and sometimes death of the wheat plants. The vector responsible for transmission is the eriophyid mite, Eriophyes tulipae Kiefer. The examination of leaf ultrastructure by electron microscopy has revealed double membrane bound bodies (DMBB’s) 0.1-0.2 μm in diameter. Dispersed fibrils within these bodies suggested the presence of nucleic acid. However, neither ribosomes characteristic of bacteria, mycoplasma and the psittacosis group of organisms nor an electron dense core characteristic of many viruses was commonly evident.In an attempt to determine if the DMBB’s contain nucleic acids, RNase A, DNase I, and lactoferrin protein were conjugated with 10 nm colloidal gold as previously described. Young root and leaf tissues from WSpM-affected wheat plants were fixed in glutaraldehyde, postfixed in osmium tetroxide,and embedded in Spurr’s resin.


2020 ◽  
Vol 48 (2) ◽  
pp. 429-439 ◽  
Author(s):  
Jorge Gago ◽  
Danilo M. Daloso ◽  
Marc Carriquí ◽  
Miquel Nadal ◽  
Melanie Morales ◽  
...  

Besides stomata, the photosynthetic CO2 pathway also involves the transport of CO2 from the sub-stomatal air spaces inside to the carboxylation sites in the chloroplast stroma, where Rubisco is located. This pathway is far to be a simple and direct way, formed by series of consecutive barriers that the CO2 should cross to be finally assimilated in photosynthesis, known as the mesophyll conductance (gm). Therefore, the gm reflects the pathway through different air, water and biophysical barriers within the leaf tissues and cell structures. Currently, it is known that gm can impose the same level of limitation (or even higher depending of the conditions) to photosynthesis than the wider known stomata or biochemistry. In this mini-review, we are focused on each of the gm determinants to summarize the current knowledge on the mechanisms driving gm from anatomical to metabolic and biochemical perspectives. Special attention deserve the latest studies demonstrating the importance of the molecular mechanisms driving anatomical traits as cell wall and the chloroplast surface exposed to the mesophyll airspaces (Sc/S) that significantly constrain gm. However, even considering these recent discoveries, still is poorly understood the mechanisms about signaling pathways linking the environment a/biotic stressors with gm responses. Thus, considering the main role of gm as a major driver of the CO2 availability at the carboxylation sites, future studies into these aspects will help us to understand photosynthesis responses in a global change framework.


Sign in / Sign up

Export Citation Format

Share Document