scholarly journals A major collagen-binding protein of chick embryo fibroblasts is a novel heat shock protein.

1986 ◽  
Vol 103 (1) ◽  
pp. 223-229 ◽  
Author(s):  
K Nagata ◽  
S Saga ◽  
K M Yamada

Heat shock proteins of chick embryo fibroblasts were analyzed on SDS polyacrylamide gradient gels and were found to include not only three previously well-characterized proteins of 25,000, 73,000, and 89,000 D, but also a 47,000-D protein. Two-dimensional gel electrophoresis revealed that this protein was unusually basic (pI = 9.0) and corresponded to a recently characterized, major gelatin- and collagen-binding protein. The induction of synthesis of this 47,000-D membrane glycoprotein after heat stress of fibroblasts was particularly apparent in preparations isolated by gelatin-affinity chromatography. Regulation of this 47,000-D phosphoprotein was more sensitive than that of three major heat shock proteins in that a substantial stimulation of synthesis occurred at even 42 degrees C, as well as at higher temperature. Phosphorylation of the 47,000-D protein was not altered after heat shock. These studies establish this phosphorylated membrane glycoprotein as a member of the heat shock/stress protein family, and they add collagen binding to the unexpectedly diverse spectrum of biochemical activities induced by exposure of cells to stress.

1994 ◽  
Vol 14 (10) ◽  
pp. 6552-6560
Author(s):  
S K Rabindran ◽  
J Wisniewski ◽  
L Li ◽  
G C Li ◽  
C Wu

The intracellular level of free heat shock proteins, in particular the 70-kDa stress protein family, has been suggested to be the basis of an autoregulatory mechanism by which the cell measures the level of thermal stress and regulates the synthesis of heat shock proteins. It has been proposed that the DNA-binding and oligomeric state of the heat shock transcription factor (HSF) is a principal step in the induction pathway that is responsive to the level of 70-kDa stress protein. To test this hypothesis, we investigated the association between HSF and 70-kDa stress protein by means of a coimmunoprecipitation assay. We found that 70-kDa stress proteins associate to similar extents with both latent and active forms of HSF, although unlike other 70-kDa stress protein substrates, the association with HSF was not significantly disrupted in the presence of ATP. Gel mobility shift assays indicated that active HSF trimers purified from a bacterial expression system could not be substantially deactivated in vitro with purified 70-kDa stress protein and ATP. In addition, elevated concentrations of hsp70 alone could not significantly inhibit induction of the DNA-binding activity of endogenous HSF in cultured rat cells, and the induction was also not inhibited in cultured rat cells or Drosophila cells containing elevated levels of all members of the heat shock protein family. However, the deactivation of HSF to the non-DNA-binding state after prolonged heat stress or during recovery could be accelerated by increased levels of heat shock proteins. Hence, the level of heat shock proteins may affect the rate of disassembly of HSF trimers, but another mechanism, as yet undefined, appears to control the onset of the oligomeric transitions.


1984 ◽  
Vol 99 (4) ◽  
pp. 1316-1323 ◽  
Author(s):  
R Morimoto ◽  
E Fodor

We have found that chicken reticulocytes respond to elevated temperatures by the induction of only one heat shock protein, HSP70, whereas lymphocytes induce the synthesis of all four heat shock proteins (89,000 mol wt, HSP89; 70,000 mol wt, HSP70; 23,000 mol wt, HSP23; and 22,000 mol wt, HSP22). The synthesis of HSP70 in lymphocytes was rapidly induced by small increases in temperature (2 degrees-3 degrees C) and blocked by preincubation with actinomycin D. Proteins normally translated at control temperatures in reticulocytes or lymphocytes were not efficiently translated after incubation at elevated temperatures. The preferential translation of mRNAs that encode the heat shock proteins paralleled a block in the translation of other cellular proteins. This effect was most prominently observed in reticulocytes where heat shock almost completely repressed alpha- and beta-globin synthesis. HSP70 is one of the major nonglobin proteins in chicken reticulocytes, present in the non-heat-shocked cell at approximately 3 X 10(6) molecules per cell. We compared HSP70 from normal and heat-shocked reticulocytes by two-dimensional gel electrophoresis and by digestion with Staphylococcus aureus V8 protease and found no detectable differences to suggest that the P70 in the normal cell is different from the heat shock-induced protein, HSP70. P70 separated by isoelectric focusing gel electrophoresis into two major protein spots, an acidic P70A (apparent pl = 5.95) and a basic P70B (apparent pl = 6.2). We observed a tissue-specific expression of P70A and P70B in lymphocytes and reticulocytes. In lymphocytes, P70A is the major 70,000-mol-wt protein synthesized at normal temperatures whereas only P70B is synthesized at normal temperatures in reticulocytes. Following incubation at elevated temperatures, the synthesis of both HSP70A and HSP70B was rapidly induced in lymphocytes, but synthesis of only HSP70B was induced in reticulocytes.


2017 ◽  
Vol 373 (1738) ◽  
pp. 20160522 ◽  
Author(s):  
A. Graham Pockley ◽  
Brian Henderson

Extracellular cell stress proteins are highly conserved phylogenetically and have been shown to act as powerful signalling agonists and receptors for selected ligands in several different settings. They also act as immunostimulatory ‘danger signals’ for the innate and adaptive immune systems. Other studies have shown that cell stress proteins and the induction of immune reactivity to self-cell stress proteins can attenuate disease processes. Some proteins (e.g. Hsp60, Hsp70, gp96) exhibit both inflammatory and anti-inflammatory properties, depending on the context in which they encounter responding immune cells. The burgeoning literature reporting the presence of stress proteins in a range of biological fluids in healthy individuals/non-diseased settings, the association of extracellular stress protein levels with a plethora of clinical and pathological conditions and the selective expression of a membrane form of Hsp70 on cancer cells now supports the concept that extracellular cell stress proteins are involved in maintaining/regulating organismal homeostasis and in disease processes and phenotype. Cell stress proteins, therefore, form a biologically complex extracellular cell stress protein network having diverse biological, homeostatic and immunomodulatory properties, the understanding of which offers exciting opportunities for delivering novel approaches to predict, identify, diagnose, manage and treat disease. This article is part of the theme issue ‘Heat shock proteins as modulators and therapeutic targets of chronic disease: an integrated perspective’.


1986 ◽  
Vol 103 (4) ◽  
pp. 1495-1507 ◽  
Author(s):  
N C Collier ◽  
M J Schlesinger

Subcellular fractionation and immunofluorescence microscopy have been used to study the intracellular distributions of the major heat shock proteins, hsp 89, hsp 70, and hsp 24, in chicken embryo fibroblasts stressed by heat shock, allowed to recover and then restressed. Hsp 89 was localized primarily to the cytoplasm except during the restress when a portion of this protein concentrated in the nuclear region. Under all conditions, hsp 89 was readily extracted from cells by detergent. During stress and restress, significant amounts of hsp 70 moved to the nucleus and became resistant to detergent extraction. Some of this hsp 70 was released from the insoluble form in an ATP-dependent reaction. Hsp 24 was confined to the cytoplasm and, during restress, aggregated to detergent-insoluble perinuclear phase-dense granules. These granules dissociated during recovery and hsp 24 could be solubilized by detergent. The nuclear hsps reappeared in the cytoplasm in cells allowed to recover at normal temperatures. Sodium arsenite also induces hsps and their distributions were similar to that observed after a heat shock, except for hsp 89, which remained cytoplasmic. We also examined by immunofluorescence the cytoskeletal systems of chicken embryo fibroblasts subjected to heat shock and found no gross morphological changes in cytoplasmic microfilaments or microtubules. However, the intermediate filament network was very sensitive and collapsed around the nucleus very shortly after a heat shock. The normal intermediate filament morphology reformed when cells were allowed to recover from the stress. Inclusion of actinomycin D during the heat shock--a condition that prevents synthesis of the hsps--did not affect the intermediate filament collapse, but recovery of the normal morphology did not occur. We suggest that an hsp(s) may aid in the formation of the intermediate filament network after stress.


1986 ◽  
Vol 250 (1) ◽  
pp. C1-C17 ◽  
Author(s):  
J. R. Subjeck ◽  
T. T. Shyy

Living organisms are known to react to a heat stress by the selective induction in the synthesis of several polypeptides. In this review we list the major stress proteins of mammalian cells that are induced by heat shock and other environments and categorize these proteins into specific subgroups: the major heat shock proteins, the glucose-regulated proteins, and the low-molecular-weight heat shock proteins. Characteristics of the localization and expression of proteins in each of these subgroups are presented. Specifically, the nuclear/nucleolar locale of certain of the major heat shock proteins is considered with respect to their association with RNA and the recovery of cells after a heat exposure. The induction of these major heat shock proteins and the repression of the glucose-regulated proteins as a result of reoxygenation of anoxic cells or by the addition of glucose to glucose-deprived cultures is described. Changes in the expression of these protein systems during embryogenesis and differentiation in mammalian and nonmammalian systems is summarized, and the protective role that some of these proteins appear to play in protecting the animal against the lethal effects of a severe heat treatment and against teratogenesis is critically examined.


1989 ◽  
Vol 109 (1) ◽  
pp. 7-15 ◽  
Author(s):  
J Landry ◽  
P Chrétien ◽  
H Lambert ◽  
E Hickey ◽  
L A Weber

Heat shock induces in cells the synthesis of specific proteins called heat shock proteins (HSPs) and a transient state of thermotolerance. The putative role of one of the HSPs, HSP27, as a protective molecule during thermal stress has been directly assessed by measuring the resistance to hyperthermia of Chinese hamster and mouse cells transfected with the human HSP27 gene contained in plasmid pHS2711. One- and two-dimensional gel electrophoresis of [3H]leucine- and [32P]orthophosphate-labeled proteins, coupled with immunological analysis using Ha27Ab and Hu27Ab, two rabbit antisera that specifically recognize the hamster and the human HSP27 protein respectively, were used to monitor expression and inducibility of the transfected and endogenous proteins. The human HSP27 gene cloned in pHS2711 is constitutively expressed in rodent cells, resulting in accumulation of the human HSP27 and all phosphorylated derivatives. No modification of the basal or heat-induced expression of endogenous HSPs is detected. The presence of additional HSP27 protein provides immediate protection against heat shock administered 48 h after transfection and confers a permanent thermoresistant phenotype to stable transfectant Chinese hamster and mouse cell lines. Mild heat treatment of the transfected cells results in an induction of the full complement of the endogenous heat shock proteins and a small increase in thermoresistance, but the level attained did not surpass that of heat-induced thermotolerant control cells. These results indicate that elevated levels of HSP27 is sufficient to give protection from thermal killing. It is concluded that HSP27 plays a major role in the increased thermal resistance acquired by cells after exposure to HSP inducers.


Sign in / Sign up

Export Citation Format

Share Document