scholarly journals Cellular and biochemical events in mammalian cells during and after recovery from physiological stress.

1986 ◽  
Vol 103 (5) ◽  
pp. 2035-2052 ◽  
Author(s):  
W J Welch ◽  
J P Suhan

We have examined and compared a number of cellular and biochemical events associated with the recovery process of rat fibroblasts placed under stress by different agents. Metabolic pulse-labeling studies of cells recovering from either heat-shock treatment, exposure to sodium arsenite, or exposure to an amino acid analogue of proline, L-azetidine 2-carboxylic acid, revealed interesting differences with respect to the individual stress proteins produced, their kinetics of induction, as well as the decay in their synthesis during the recovery period. In the initial periods of recovery, the major stress-induced 72-kD protein accumulates within the altered nucleoli in close association with the pre-ribosomal-containing granular region. During the later times of recovery from stress, the nucleoli begin to regain a normal morphology, show a corresponding loss of the 72-kD protein, and the majority of the protein now begins to accumulate within the cytoplasm in three distinct locales: the perinuclear region, along the perimeter of the cells, and finally in association with large phase-dense structures. These latter structures appear to consist of large aggregates of phase-dense material with no obvious encapsulating membrane. More interestingly we show, using double-label indirect immunofluorescence analysis, that much of the perinuclear and cell perimeter-distributed 72-kD protein coincides with the distribution of the cytoplasmic ribosomes. We discuss the possible implications of the presence of the 72-kD stress proteins within the pre-ribosomal-containing granular region of the nucleolus as well as its subsequent colocalization with cytoplasmic ribosomes in terms of the translational changes which occur in cells both during and after recovery from physiological stress.

1991 ◽  
Vol 2 (2) ◽  
pp. 165-179 ◽  
Author(s):  
L A Mizzen ◽  
A N Kabiling ◽  
W J Welch

In mammalian cells, two of the so-called heat shock (hsp) or stress proteins are components of the mitochondria. One of these, hsp 58, is a member of the bacterial GroEL family, whereas the other, glucose-regulated protein (grp) 75, represents a member of the hsp 70 family of stress proteins. Owing to previous studies implicating a role for both the hsp 70 and GroEL families in facilitating protein maturation events, we used the method of native immunoprecipitation to examine whether hsp 58 and grp 75 might interact with other proteins of the mitochondria. In cells pulse-labeled with [35S]-methionine, a significant number of newly synthesized mitochondrial proteins co-precipitated with either hsp 58 or grp 75. Such interactions appeared transient. For example, providing the pulse-labeled cells a subsequent chase period in the absence of radiolabel resulted in a reduction of co-precipitating proteins. If the pulse-chase labeling experiments were performed in the presence of an amino acid analogue, somewhat different results were obtained. Specifically, although many of the newly synthesized and analogue-containing proteins again were observed to co-precipitate with grp 75, the interactions did not appear transient, but instead were stable. Under steady-state labeling conditions, we also observed a portion of hsp 58 and grp 75 in an apparent complex with one another. On addition of ATP, the complex was dissociated. Accompanying this dissociation was the concomitant autophosphorylation of grp 75. On the basis of these observations, as well as previous studies examining the structure/function of the hsp 70 and GroEL proteins, we suspect that both hsp 58 and grp 75 interact with and facilitate the folding and assembly of proteins as they enter into the mitochondria.


1993 ◽  
Vol 122 (1) ◽  
pp. 123-135 ◽  
Author(s):  
RK Miller ◽  
S Khuon ◽  
RD Goldman

Keratin intermediate filaments (IF) are obligate heteropolymers containing equal amounts of type I and type II keratin. We have previously shown that microinjected biotinylated type I keratin is rapidly incorporated into endogenous bundles of keratin IF (tonofilaments) of PtK2 cells. In this study we show that the earliest steps in the assembly of keratin subunits into tonofilaments involve the extremely rapid formation of discrete aggregates of microinjected keratin. These are seen as fluorescent spots containing both type I and type II keratins within 1 min post-injection as determined by double label immunofluorescence. These observations suggest that endogenous type II keratin subunits can be rapidly mobilized from their endogenous state to form complexes with the injected type I protein. Furthermore, confocal microscopy and immunogold electron microscopy suggest that the type I-type II keratin spots from in close association with the endogenous keratin IF network. When the biotinylated protein is injected at concentrations of 0.3-0.5 mg/ml, the organization of the endogenous network of tonofilaments remains undisturbed during incorporation into tonofilaments. However, microinjection of 1.5-2.0 mg/ml of biotinylated type I results in significant alterations in the organization and assembly state of the endogenous keratin IF network soon after microinjection. The results of this study are consistent with the existence of a state of equilibrium between keratin subunits and polymerized keratin IF in epithelial cells, and provide further proof that IF are dynamic elements of the cytoskeleton of mammalian cells.


2016 ◽  
pp. 126-129
Author(s):  
M. Makarenko ◽  
◽  
D. Hovsyeyev ◽  
L. Sydoryk ◽  
◽  
...  

Different kinds of physiological stress cause mass changes in the cells, including the changes in the structure and function of the protein complexes and in separate molecules. The protein functions is determined by its folding (the spatial conclusion), which depends on the functioning of proteins of thermal shock- molecular chaperons (HSPs) or depends on the stress proteins, that are high-conservative; specialized proteins that are responsible for the correct proteinaceous folding. The family of the molecular chaperones/ chaperonins/ Hsp60 has a special place due to the its unique properties of activating the signaling cascades through the system of Toll-like receptors; it also stimulates the cells to produce anti- inflammatory cytokines, defensins, molecules of cell adhesion and the molecules of MHC; it functions as the intercellular signaling molecule. The pathological role of Hsp60 is established in a wide range of illnesses, from diabetes to atherosclerosis, where Hsp60 takes part in the regulation of both apoptosis and the autoimmune processes. The presence of the HSPs was found in different tissues that are related to the reproductive system. Key words: molecular chaperons (HSPs), Toll-like receptors, reproductive function, natural auto antibody.


2017 ◽  
Vol 28 (2) ◽  
pp. 270-284 ◽  
Author(s):  
Milton To ◽  
Clark W. H. Peterson ◽  
Melissa A. Roberts ◽  
Jessica L. Counihan ◽  
Tiffany T. Wu ◽  
...  

The endoplasmic reticulum (ER) mediates the folding, maturation, and deployment of the secretory proteome. Proteins that fail to achieve their native conformation are retained in the ER and targeted for clearance by ER-associated degradation (ERAD), a sophisticated process that mediates the ubiquitin-dependent delivery of substrates to the 26S proteasome for proteolysis. Recent findings indicate that inhibition of long-chain acyl-CoA synthetases with triacsin C, a fatty acid analogue, impairs lipid droplet (LD) biogenesis and ERAD, suggesting a role for LDs in ERAD. However, whether LDs are involved in the ERAD process remains an outstanding question. Using chemical and genetic approaches to disrupt diacylglycerol acyltransferase (DGAT)–dependent LD biogenesis, we provide evidence that LDs are dispensable for ERAD in mammalian cells. Instead, our results suggest that triacsin C causes global alterations in the cellular lipid landscape that disrupt ER proteostasis by interfering with the glycan trimming and dislocation steps of ERAD. Prolonged triacsin C treatment activates both the IRE1 and PERK branches of the unfolded protein response and ultimately leads to IRE1-dependent cell death. These findings identify an intimate relationship between fatty acid metabolism and ER proteostasis that influences cell viability.


Author(s):  
P.L. Luque ◽  
G.J. Pierce ◽  
J.A. Learmonth ◽  
M.B. Santos ◽  
E. Ieno ◽  
...  

We examined the tooth ultra-structure of harbour porpoises (Phocoena phocoena) from Scottish waters to determine whether the incidence of mineralization anomalies could be related to certain life history events (e.g. the achievement of sexual maturation) as well as other factors that affect the general health of the individual (e.g. persistent organic pollutant (POP) concentrations in blubber). Five distinct types of mineralization anomalies were recorded: accessory lines, marker lines, dentinal resorption, cemental disturbance and pulp stones and the occurrence of these anomalies was scored by sex, age and maturity state. Overall, the incidence of mineralization anomalies was high and tended to increase with age. Marker lines and accessory lines were the most commonly recorded anomalies while pulp stones were least frequent. Duplicate teeth (i.e. from the same individual) always showed the same pattern of anomaly occurrence.Fitted binary generalized linear and additive models indicated that the presence of dentinal resorption, cemental disturbance and marker lines in harbour porpoise teeth increased with age, body length and maturity. Males displayed marker lines more frequently than females. Age was the best predictor of the incidence of dentinal resorption and cemental disturbance while age and sex were the best predictors of the incidence of marker lines. The time course of appearance of dentinal resorption and cemental disturbance suggests that their occurrence could be related to physiological stress linked to sexual maturation. Marker lines were found within growth layer groups which coincided with the beginning of weaning and sexual maturation, suggesting an association with these two major life history events. Accessory lines were found in most teeth and may be a normal characteristic of porpoise teeth or reflect regular events. Pulp stones appeared only in mature animals. We found no evidence that the presence of anomalies in teeth was significantly related to POP concentrations in the blubber.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1985 ◽  
Vol 5 (8) ◽  
pp. 2080-2089 ◽  
Author(s):  
C T Wake ◽  
F Vernaleone ◽  
J H Wilson

Cultured animal cells rearrange foreign DNA very efficiently by homologous recombination. The individual steps that constitute the mechanism(s) of homologous recombination in transfected DNA are as yet undefined. In this study, we examined the topological requirements by using the genome of simian virus 40 (SV40) as a probe. By assaying homologous recombination between defective SV40 genomes after transfection into CV1 monkey cells, we showed that linear molecules are preferred substrates for homologous exchanges, exchanges are distributed around the SV40 genome, and the frequency of exchange is not diminished significantly by the presence of short stretches of non-SV40 DNA at the ends. These observations are considered in relation to current models of homologous recombination in mammalian cells, and a new model is proposed. The function of somatic cell recombination is discussed.


1970 ◽  
Vol 32 (2) ◽  
pp. 11-17 ◽  
Author(s):  
R Saha ◽  
A Samanta ◽  
NC Dey

Introduction: Occupational disorders invite absenteeism amongst the miners. Though rapid technological advancement has happened, yet assessment of cardiac workload was largely ignored in underground coal mines in India. Methods: Physiological stress was evaluated in terms of working heart rate, net cardiac cost and relative cardiac cost. Heart rate was measured during their course of work by heart rate monitor at the coal face. Recovery heart rates and environmental heat load were also assessed. Results: Heart rate was found to be 117 and 122 beats/min respectively in first and second spell. NCC (49.7 and 54.8 beats /min) and RCC (47% and 52%) exhibit significant variations between spells, whereas rate of recovery had been very poor amongst the workers who regularly exceeded recommended levels of cardiac strain indices. The nature of work depicted it as a heavy job although recovery trend categorizes it heavier than that. ET and WBGT were above the recommended limits as per the guidelines of WHO and ACGIH. Conclusions: High physiological demand of the job with towering heat stress was found to hinder the recovery process and may cause deleterious impacts on the workers. Ergonomic interventions were highly felt towards job organization and up gradation of environmental conditions. Keywords: Coalmines; dressers; workload DOI: http://dx.doi.org/10.3126/joim.v32i2.4938 Journal of Institute of Medicine, August, 2010; 32: 11-17


2008 ◽  
Vol 86 (1) ◽  
pp. 37-45 ◽  
Author(s):  
Aliakbar Taherian ◽  
Patrick H. Krone ◽  
Nick Ovsenek

Hsp90 chaperone complexes function in assembly, folding, and activation of numerous substrates. The 2 vertebrate homologues encoded by the genes hsp90a and hsp90b are differentially expressed in embryonic and adult tissues and during stress; however, it is not known whether they possess identical functional activities in chaperone complexes. This question was addressed by examining potential differences between the Hsp90 isoforms with respect to both cochaperone and substrate interactions. Epitope-tagged proteins were expressed in mammalian cells or Xenopus oocytes and subjected to immunoprecipitation with an array of cochaperones. Both isoforms were shown to participate equally in multichaperone complexes, and no significant differences in cochaperone distribution were observed. The substrates Raf-1, HSF1, Cdc37, and MEK1 interacted with both Hsp90α and Hsp90β, and the relative patterns of these interactions were not affected by heat shock. The substrate kinases c-Src, CKIIB, A-raf, and Erk interacted with both isoforms; however, significantly more Hsp90α was recovered after heat shock. The data demonstrate that Hsp90α and Hsp90β exhibit similar interactions with cochaperones, but significantly different behaviors with respect to substrate interactions under stress conditions. These results reveal both functional similarities and key functional differences in the individual members of this protein family.


1996 ◽  
Vol 2 (1) ◽  
pp. 51-58
Author(s):  
Rachel C. Winthrop

An estimated 600 people seek hospital and/or medical assistance for recently acquired brain injury each week in New Zealand. Many of these people return to work only to find themselves unable to function at the same level as achieved prior to injury. The reasons for this are frequently not understood either by the individual with the injury, the individual's colleagues or by the various professionals approached for advice. Common deficits identified impact significantly on an individual's work performance indicating comprehensive vocational rehabilitation services are required. Rehabilitation counsellors have a key role to play in the vocational rehabilitation process of people with head injuries. This requires that rehabilitation counsellors possess a knowledge of brain injury sequelae, their effects on everyday functioning and of the recovery process from the injury.


Sign in / Sign up

Export Citation Format

Share Document