scholarly journals Evidence that calcium may control neurite outgrowth by regulating the stability of actin filaments.

1989 ◽  
Vol 109 (3) ◽  
pp. 1229-1243 ◽  
Author(s):  
K L Lankford ◽  
P C Letourneau

We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of calcium ionophores, changes in growth cone shape and retraction of neurites were also observed. Treatment with calcium ionophores significantly increased growth cone calcium. The ability of the microtubule stabilizing agent taxol to block A23187-induced neurite retraction and the ability of the actin stabilizing agent phalloidin to reverse both A23187-induced growth cone collapse and neurite retraction suggested that calcium acted on the cytoskeleton. Whole mount electron micrographs revealed an apparent disruption of actin filaments in the periphery (but not filopodia) of growth cones that were exposed to calcium ionophores in medium with normal calcium concentrations. This effect was not seen in cells treated with calcium ionophores in calcium-free medium or cells treated with the monovalent cation ionophore monensin, indicating that these effects were calcium specific. Ultrastructure of Triton X-100 extracted whole mounts further indicated that both microtubules and microfilaments may be more stable or extraction resistant after treatments which lower intracellular calcium. Taken together, the data suggest that calcium may control neurite elongation at least in part by regulating actin filament stability, and support a model for neurite outgrowth involving a balance between assembly and disassembly of the cytoskeleton.

2020 ◽  
Author(s):  
Martina A. Maibach ◽  
Ester Piovesana ◽  
Julia Kaiser ◽  
Mea M. Holm ◽  
Zorica Risic ◽  
...  

AbstractNogo-A is a well-characterized myelin-associated membrane protein that restricts fibre growth and the regenerative capacity of the adult central nervous system after injury. To date Nogo-A post-receptor signalling pathway research focused on the RhoA/ROCK cascade, which can lead to growth cone collapse and neurite retraction. Much less is known about continued intracellular Nogo-A signalling mediating long-term neurite outgrowth inhibition resulting from transcriptional and translational changes. Here, we propose a simple but highly reproducible in vitro assay to study Nogo-A related signaling and neurite outgrowth inhibition in general. Furthermore, we identified ERK1/2 as downstream effector of Nogo-A, partially mediating its neurite outgrowth inhibition. We describe ERK1/2 dependent changes of translational events such as elevation of RhoA levels within the growth cone, which may potentiate the cells’ responses to Nogo-A. We also observed Nogo-A dependent upregulation of the JAK/STAT pathway inhibitors SOCS3 and KLF4 and downregulation of insulin mediated phosphorylation of AKT, indicating direct negative crosstalk between Nogo-A signalling and the growth promoting JAK/STAT and AKT/mTORC1 pathways.


2005 ◽  
Vol 25 (22) ◽  
pp. 9973-9984 ◽  
Author(s):  
Nariko Arimura ◽  
Céline Ménager ◽  
Yoji Kawano ◽  
Takeshi Yoshimura ◽  
Saeko Kawabata ◽  
...  

ABSTRACT Collapsin response mediator protein 2 (CRMP-2) enhances the advance of growth cones by regulating microtubule assembly and Numb-mediated endocytosis. We previously showed that Rho kinase phosphorylates CRMP-2 during growth cone collapse; however, the roles of phosphorylated CRMP-2 in growth cone collapse remain to be clarified. Here, we report that CRMP-2 phosphorylation by Rho kinase cancels the binding activity to the tubulin dimer, microtubules, or Numb. CRMP-2 binds to actin, but its binding is not affected by phosphorylation. Electron microscopy revealed that CRMP-2 localizes on microtubules, clathrin-coated pits, and actin filaments in dorsal root ganglion neuron growth cones, while phosphorylated CRMP-2 localizes only on actin filaments. The phosphomimic mutant of CRMP-2 has a weakened ability to enhance neurite elongation. Furthermore, ephrin-A5 induces phosphorylation of CRMP-2 via Rho kinase during growth cone collapse. Taken together, these results suggest that Rho kinase phosphorylates CRMP-2, and inactivates the ability of CRMP-2 to promote microtubule assembly and Numb-mediated endocytosis, during growth cone collapse.


1994 ◽  
Vol 125 (2) ◽  
pp. 359-368 ◽  
Author(s):  
K S Warren ◽  
J L Lin ◽  
D D Wamboldt ◽  
J J Lin

Fibroblast caldesmon is a protein postulated to participate in the modulation of the actin cytoskeleton and the regulation of actin-based motility. The cDNAs encoding the NH2-terminal (aa.1-243, CaD40) and COOH-terminal (aa.244-538, CaD39) fragments of human caldesmon were subcloned into expression vectors and we previously reported that bacterially produced CaD39 protein retains its actin-binding properties as well as its ability to enhance low M(r) tropomyosin (TM) binding to actin and to inhibit TM-actin-activated HMM ATPase activity in vitro (Novy, R. E., J. R. Sellers, L.-F. Liu, and J. J.-C. Lin. 1993. Cell Motil. Cytoskeleton. 26:248-261). Bacterially produced CaD40 does not bind actin. To study the in vivo effects of CaD39 expression on the stability of actin filaments in CHO cells, we isolated and characterized stable CHO transfectants which express varying amounts of CaD39. We found that expression of CaD39 in CHO cells stabilized microfilament bundles as well as endogenous TM. CaD39-expressing clones displayed an increased resistance to cytochalasin B and Triton X-100 treatments and yielded increased amounts of TM-containing actin filaments in microfilament isolation procedures. In addition, analysis of these clones with immunoblotting and indirect immunofluorescence microscopy with anti-TM antibody revealed that stabilized endogenous TM and enhanced TM-containing microfilament bundles parallel increased amounts of CaD39 expression. The increased TM observed corresponded to a decrease in TM turnover rate and did not appear to be due to increased synthesis of endogenous TM. Additionally, the phenomenon of stabilized TM did not occur in stable CHO clones expressing CaD40. Therefore, it is likely that CaD39 can enhance TM's binding to F-actin in vivo, thus reducing TM's rate of turnover and stabilizing actin microfilament bundles.


2019 ◽  
Author(s):  
Cheng Yung Lin ◽  
Chia Lun Wu ◽  
Kok Zhi Lee ◽  
You Jei Chen ◽  
Po Hsiang Zhang ◽  
...  

AbstractNogoA inhibits neurite outgrowth of motoneurons (NOM) through interaction with its receptors, Nogo66/NgR. Inhibition of Nogo receptors rescues NOM, but not to the extent exhibited by NogoA-knockout mice, suggesting the presence of other pathways. We found that NogoA-overexpressing muscle cells reduced phosphoglycerate kinase 1 (Pgk1) secretion, resulting in inhibiting NOM. Apart from its glycolytic role and independent of the Nogo66 pathway, extracellular Pgk1 stimulated NOM by triggering a reduction of p-Cofilin-S3, a growth cone collapse marker, through decreasing a novel Rac1-GTP/p-Pak1-T423/p-P38-T180/p-MK2-T334/p-Limk1-S323/p-Cofilin-S3 molecular pathway. Not only did supplementary Pgk1 enhance NOM in defective cells, but injection of Pgk1 rescued denervation in muscle-specific NogoA-overexpression of zebrafish and an Amyotrophic Lateral Sclerosis mouse model, SOD1-G93A. Thus, Pgk1 secreted from muscle is detrimental to motoneuron synapse growth and maintenance.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Cheng Yung Lin ◽  
Chia Lun Wu ◽  
Kok Zhi Lee ◽  
You Jei Chen ◽  
Po Hsiang Zhang ◽  
...  

NogoA inhibits neurite outgrowth of motoneurons (NOM) through interaction with its receptors, Nogo66/NgR. Inhibition of Nogo receptors rescues NOM, but not to the extent exhibited by NogoA-knockout mice, suggesting the presence of other pathways. We found that NogoA-overexpressing muscle cells reduced phosphoglycerate kinase 1 (Pgk1) secretion, resulting in inhibiting NOM. Apart from its glycolytic role and independent of the Nogo66 pathway, extracellular Pgk1 stimulated NOM by triggering a reduction of p-Cofilin-S3, a growth cone collapse marker, through decreasing a novel Rac1-GTP/p-Pak1-T423/p-P38-T180/p-MK2-T334/p-Limk1-S323/p-Cofilin-S3 molecular pathway. Not only did supplementary Pgk1 enhance NOM in defective cells, but injection of Pgk1 rescued denervation in muscle-specific NogoA-overexpression of zebrafish and an Amyotrophic Lateral Sclerosis mouse model, SOD1 G93A. Thus, Pgk1 secreted from muscle is detrimental to motoneuron neurite outgrowth and maintenance.


1983 ◽  
Vol 97 (4) ◽  
pp. 963-973 ◽  
Author(s):  
P C Letourneau

Sensory neurons from chick embryos were cultured on substrata that support neurite growth, and were fixed and prepared for both cytochemical localization of actin and electron microscopic observation of actin filaments in whole-mounted specimens. Samples of cells were treated with the detergent Triton X-100 before, during, or after fixation with glutaraldehyde to determine the organization of actin in simpler preparations of extracted cytoskeletons. Antibodies to actin and a fluorescent derivative of phallacidin bound strongly to the leading margins of growth cones, but in neurites the binding of these markers for actin was very weak. This was true in all cases of Triton X-100 treatment, even when cells were extracted for 4 min before fixation. In whole-mounted cytoskeletons there were bundles and networks of 6-7-nm filaments in leading edges of growth cones but very few 6-7-n filaments were present among the microtubules and neurofilaments in the cytoskeletons of neurites. These filaments, which are prominent in growth cones, were identified as actin because they were stabilized against detergent extraction by the presence of phallacidin or the heavy meromyosin and S1 fragments of myosin. In addition, heavy meromyosin and S1 decorated these filaments as expected for binding to F-actin. Microtubules extended into growth cone margins and terminated within the network of actin filaments and bundles. Interactions between microtubule ends and these actin filaments may account for the frequently observed alignment of microtubules with filopodia at the growth cone margins.


1999 ◽  
Vol 10 (6) ◽  
pp. 1851-1857 ◽  
Author(s):  
Onno Kranenburg ◽  
Mieke Poland ◽  
Francis P. G. van Horck ◽  
David Drechsel ◽  
Alan Hall ◽  
...  

Neuronal cells undergo rapid growth cone collapse, neurite retraction, and cell rounding in response to certain G protein–coupled receptor agonists such as lysophosphatidic acid (LPA). These shape changes are driven by Rho-mediated contraction of the actomyosin-based cytoskeleton. To date, however, detection of Rho activation has been hampered by the lack of a suitable assay. Furthermore, the nature of the G protein(s) mediating LPA-induced neurite retraction remains unknown. We have developed a Rho activation assay that is based on the specific binding of active RhoA to its downstream effector Rho-kinase (ROK). A fusion protein of GST and the Rho-binding domain of ROK pulls down activated but not inactive RhoA from cell lysates. Using GST-ROK, we show that in N1E-115 neuronal cells LPA activates endogenous RhoA within 30 s, concomitant with growth cone collapse. Maximal activation occurs after 3 min when neurite retraction is complete and the actin cytoskeleton is fully contracted. LPA-induced RhoA activation is completely inhibited by tyrosine kinase inhibitors (tyrphostin 47 and genistein). Activated Gα12 and Gα13 subunits mimic LPA both in activating RhoA and in inducing RhoA-mediated cytoskeletal contraction, thereby preventing neurite outgrowth. We conclude that in neuronal cells, LPA activates RhoA to induce growth cone collapse and neurite retraction through a G12/13-initiated pathway that involves protein-tyrosine kinase activity.


1995 ◽  
Vol 198 (7) ◽  
pp. 1433-1446 ◽  
Author(s):  
M D Neely ◽  
J G Nicholls

The development of the nervous system takes place in two main steps: first an extensive preliminary network is formed and then it is pruned and trimmed to establish the final form. This refinement is achieved by mechanisms that include cell death, selective growth and loss of neurites and the stabilization and elimination of synapses. The focus of this review is on selective neurite retraction during development, with particular emphasis on the role of electrical activity. In many developing vertebrate and invertebrate neurones, the frequency and duration of ongoing impulse activity determine the final arborizations and the pattern of connections. When impulse traffic is silenced, axons fail to retract branches that had grown to inappropriate destinations in the mammalian visual system, cerebellum and neuromuscular junctions. Similarly, in crustaceans, Drosophila melanogaster and leeches, refinements in axonal morphology during development are influenced by impulse activity. From experiments made in culture, it has been possible to mimic these events and to show a clear link between the density of voltage-activated calcium channels in a neurite and its retraction following stimulation. The distribution of these calcium channels in turn is determined by the substratum with which the neurites are in contact or by the formation of synapses. Several lines of evidence suggest that calcium entry into the growth cone leads to collapse by disruption of actin filaments. One candidate for coupling membrane events to neurite retraction is the microfilament-associated protein gelsolin which, in its calcium-activated state, severs actin filaments. Open questions that remain concern the differential effects of activity on dendrites and axons as well as the mechanisms by which the growth cone integrates information derived from stimuli in the cell and in the extracellular environment.


Sign in / Sign up

Export Citation Format

Share Document