Electrical activity, growth cone motility and the cytoskeleton.

1995 ◽  
Vol 198 (7) ◽  
pp. 1433-1446 ◽  
Author(s):  
M D Neely ◽  
J G Nicholls

The development of the nervous system takes place in two main steps: first an extensive preliminary network is formed and then it is pruned and trimmed to establish the final form. This refinement is achieved by mechanisms that include cell death, selective growth and loss of neurites and the stabilization and elimination of synapses. The focus of this review is on selective neurite retraction during development, with particular emphasis on the role of electrical activity. In many developing vertebrate and invertebrate neurones, the frequency and duration of ongoing impulse activity determine the final arborizations and the pattern of connections. When impulse traffic is silenced, axons fail to retract branches that had grown to inappropriate destinations in the mammalian visual system, cerebellum and neuromuscular junctions. Similarly, in crustaceans, Drosophila melanogaster and leeches, refinements in axonal morphology during development are influenced by impulse activity. From experiments made in culture, it has been possible to mimic these events and to show a clear link between the density of voltage-activated calcium channels in a neurite and its retraction following stimulation. The distribution of these calcium channels in turn is determined by the substratum with which the neurites are in contact or by the formation of synapses. Several lines of evidence suggest that calcium entry into the growth cone leads to collapse by disruption of actin filaments. One candidate for coupling membrane events to neurite retraction is the microfilament-associated protein gelsolin which, in its calcium-activated state, severs actin filaments. Open questions that remain concern the differential effects of activity on dendrites and axons as well as the mechanisms by which the growth cone integrates information derived from stimuli in the cell and in the extracellular environment.

1989 ◽  
Vol 109 (3) ◽  
pp. 1229-1243 ◽  
Author(s):  
K L Lankford ◽  
P C Letourneau

We investigated the effects of calcium removal and calcium ionophores on the behavior and ultrastructure of cultured chick dorsal root ganglia (DRG) neurons to identify possible mechanisms by which calcium might regulate neurite outgrowth. Both calcium removal and the addition of calcium ionophores A23187 or ionomycin blocked outgrowth in previously elongating neurites, although in the case of calcium ionophores, changes in growth cone shape and retraction of neurites were also observed. Treatment with calcium ionophores significantly increased growth cone calcium. The ability of the microtubule stabilizing agent taxol to block A23187-induced neurite retraction and the ability of the actin stabilizing agent phalloidin to reverse both A23187-induced growth cone collapse and neurite retraction suggested that calcium acted on the cytoskeleton. Whole mount electron micrographs revealed an apparent disruption of actin filaments in the periphery (but not filopodia) of growth cones that were exposed to calcium ionophores in medium with normal calcium concentrations. This effect was not seen in cells treated with calcium ionophores in calcium-free medium or cells treated with the monovalent cation ionophore monensin, indicating that these effects were calcium specific. Ultrastructure of Triton X-100 extracted whole mounts further indicated that both microtubules and microfilaments may be more stable or extraction resistant after treatments which lower intracellular calcium. Taken together, the data suggest that calcium may control neurite elongation at least in part by regulating actin filament stability, and support a model for neurite outgrowth involving a balance between assembly and disassembly of the cytoskeleton.


1990 ◽  
Vol 29 (04) ◽  
pp. 282-288 ◽  
Author(s):  
A. van Oosterom

AbstractThis paper introduces some levels at which the computer has been incorporated in the research into the basis of electrocardiography. The emphasis lies on the modeling of the heart as an electrical current generator and of the properties of the body as a volume conductor, both playing a major role in the shaping of the electrocardiographic waveforms recorded at the body surface. It is claimed that the Forward-Problem of electrocardiography is no longer a problem. Several source models of cardiac electrical activity are considered, one of which can be directly interpreted in terms of the underlying electrophysiology (the depolarization sequence of the ventricles). The importance of using tailored rather than textbook geometry in inverse procedures is stressed.


2021 ◽  
Vol 41 (01) ◽  
pp. 014-021
Author(s):  
Markus Bender ◽  
Raghavendra Palankar

AbstractPlatelet activation and aggregation are essential to limit blood loss at sites of vascular injury but may also lead to occlusion of diseased vessels. The platelet cytoskeleton is a critical component for proper hemostatic function. Platelets change their shape after activation and their contractile machinery mediates thrombus stabilization and clot retraction. In vitro studies have shown that platelets, which come into contact with proteins such as fibrinogen, spread and first form filopodia and then lamellipodia, the latter being plate-like protrusions with branched actin filaments. However, the role of platelet lamellipodia in hemostasis and thrombus formation has been unclear until recently. This short review will briefly summarize the recent findings on the contribution of the actin cytoskeleton and lamellipodial structures to platelet function.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 724
Author(s):  
Alberto Cesarani ◽  
Giuseppe Pulina

The concept of welfare applied to farm animals has undergone a remarkable evolution. The growing awareness of citizens pushes farmers to guarantee the highest possible level of welfare to their animals. New perspectives could be opened for animal welfare reasoning around the concept of domestic, especially farm, animals as partial human artifacts. Therefore, it is important to understand how much a particular behavior of a farm animal is far from the natural one of its ancestors. This paper is a contribution to better understand the role of genetics of the farm animals on their behavior. This means that the naïve approach to animal welfare regarding returning animals to their natural state should be challenged and that welfare assessment should be considered.


2020 ◽  
Vol 22 (1) ◽  
pp. 27
Author(s):  
Ilaria Plantamura ◽  
Alessandra Cataldo ◽  
Giulia Cosentino ◽  
Marilena V. Iorio

Despite its controversial roles in different cancer types, miR-205 has been mainly described as an oncosuppressive microRNA (miRNA), with some contrasting results, in breast cancer. The role of miR-205 in the occurrence or progression of breast cancer has been extensively studied since the first evidence of its aberrant expression in tumor tissues versus normal counterparts. To date, it is known that the expression of miR-205 in the different subtypes of breast cancer is decreasing from the less aggressive subtype, estrogen receptor/progesterone receptor positive breast cancer, to the more aggressive, triple negative breast cancer, influencing metastasis capability, response to therapy and patient survival. In this review, we summarize the most important discoveries that have highlighted the functional role of this miRNA in breast cancer initiation and progression, in stemness maintenance, in the tumor microenvironment, its potential role as a biomarker and its relevance in normal breast physiology—the still open questions. Finally, emerging evidence reveals the role of some lncRNAs in breast cancer progression as sponges of miR-205. Here, we also reviewed the studies in this field.


2021 ◽  
Vol 24 ◽  
Author(s):  
Sander van der Linden ◽  
Jon Roozenbeek ◽  
Rakoen Maertens ◽  
Melisa Basol ◽  
Ondřej Kácha ◽  
...  

Abstract In recent years, interest in the psychology of fake news has rapidly increased. We outline the various interventions within psychological science aimed at countering the spread of fake news and misinformation online, focusing primarily on corrective (debunking) and pre-emptive (prebunking) approaches. We also offer a research agenda of open questions within the field of psychological science that relate to how and why fake news spreads and how best to counter it: the longevity of intervention effectiveness; the role of sources and source credibility; whether the sharing of fake news is best explained by the motivated cognition or the inattention accounts; and the complexities of developing psychometrically validated instruments to measure how interventions affect susceptibility to fake news at the individual level.


Sign in / Sign up

Export Citation Format

Share Document