scholarly journals Microtubule depolymerization promotes particle and chromosome movement in vitro.

1991 ◽  
Vol 112 (6) ◽  
pp. 1165-1175 ◽  
Author(s):  
M Coue ◽  
V A Lombillo ◽  
J R McIntosh

We have developed a system for studying the motions of cellular objects attached to depolymerizing microtubules in vitro. Radial arrays of microtubules were grown from lysed and extracted Tetrahymena cells attached to a glass coverslip that formed the top of a light microscope perfusion chamber. A preparation of chromosomes, which also contained vesicles, was then perfused into the chamber and allowed to bind to the microtubule array. The concentration of tubulin was then reduced by perfusing buffer that lacked both tubulin and nucleotide triphosphates, and the resulting microtubule depolymerization was observed by light microscopy. A fraction of the bound objects detached in the flow and washed away, while others stabilized the microtubules to which they were bound. Some of the particles and chromosomes, however, moved in toward the Tetrahymena ghost as their associated microtubules shortened. The mean speeds for particles and chromosomes were 26 +/- 20 and 15 +/- 12 microns/min, respectively. These motions occurred when nucleotide triphosphate levels were very low, as a result of either dilution or by the action of apyrase. Furthermore, the motions were unaffected by 100 microM sodium orthovanadate, suggesting that these forces are not the result of ATP hydrolysis by a minus end-directed mechanoenzyme. We conclude that microtubule depolymerization provided the free energy for the motions observed. All the objects that we studied in detail moved against a stream of buffer flowing at approximately 100 microns/s, so that the force being developed was at least 10(-7) dynes. This force is large enough to contribute to some forms of motility in living cells.

2011 ◽  
Vol 22 (8) ◽  
pp. 1217-1226 ◽  
Author(s):  
John G. Tooley ◽  
Stephanie A. Miller ◽  
P. Todd Stukenberg

In kinetochores, the Ndc80 complex couples the energy in a depolymerizing microtubule to perform the work of moving chromosomes. The complex directly binds microtubules using an unstructured, positively charged N-terminal tail located on Hec1/Ndc80. Hec1/Ndc80 also contains a calponin homology domain (CHD) that increases its affinity for microtubules in vitro, yet whether it is required in cells and how the tail and CHD work together are critical unanswered questions. Human kinetochores containing Hec1/Ndc80 with point mutations in the CHD fail to align chromosomes or form productive microtubule attachments. Kinetochore architecture and spindle checkpoint protein recruitment are unaffected in these mutants, and the loss of CHD function cannot be rescued by removing Aurora B sites from the tail. The interaction between the Hec1/Ndc80 CHD and a microtubule is facilitated by positively charged amino acids on two separate regions of the CHD, and both are required for kinetochores to make stable attachments to microtubules. Chromosome congression in cells also requires positive charge on the Hec1 tail to facilitate microtubule contact. In vitro binding data suggest that charge on the tail regulates attachment by directly increasing microtubule affinity as well as driving cooperative binding of the CHD. These data argue that in vertebrates there is a tripartite attachment point facilitating the interaction between Hec1/Ndc80 and microtubules. We discuss how such a complex microtubule-binding interface may facilitate the coupling of depolymerization to chromosome movement.


Blood ◽  
1967 ◽  
Vol 30 (5) ◽  
pp. 557-568 ◽  
Author(s):  
E. G. RONDANELLI ◽  
E. MAGLIULO ◽  
A. GIRALDI ◽  
F. P. CARCÒ

Abstract Data on the mitotic index of human granulocytopoietic cells are presented. From these and from the duration of mitosis directly measured in living cells by phase contrast microscope, the weighted average generation time and the mean compartment transit time are computed. Maturation in granulocytopoietic cells appears to induce a reduction of mitotic indices and mitotic rate and an increase in mitotic time and in mean compartment transit time. Part of the increment in mitotic duration may be due to the acquisition by a part of the granulocytopoietic cells of cytoplasmic peripheral motility or other specialized activities, thus distracting part of the energies destined to mitosis.


Nature ◽  
1988 ◽  
Vol 331 (6156) ◽  
pp. 499-504 ◽  
Author(s):  
Douglas E. Koshland ◽  
T. J. Mitchison ◽  
Marc W. Kirschner

1952 ◽  
Vol s3-93 (24) ◽  
pp. 379-380
Author(s):  
L. G. LAJTHA ◽  
R. OLIVER

A chamber with glass coverslip at top and bottom is filled with a beta-emitting radioactive isotope (e.g. P32). A drop of cell-suspension placed on top of the chamber may then be irradiated at dose-rates up to 20,000 rep/hour, while the optical conditions remain unimpaired for microscopical examination. Extra protection for the observer is unnecessary.


1995 ◽  
Vol 6 (9) ◽  
pp. 1215-1229 ◽  
Author(s):  
R Dhamodharan ◽  
M A Jordan ◽  
D Thrower ◽  
L Wilson ◽  
P Wadsworth

We have characterized the effects of vinblastine on the dynamic instability behavior of individual microtubules in living BS-C-1 cells microinjected with rhodamine-labeled tubulin and have found that at low concentrations (3-64 nM), vinblastine potently suppresses dynamic instability without causing net microtubule depolymerization. Vinblastine suppressed the rates of microtubule growth and shortening, and decreased the frequency of transitions from growth or pause to shortening, also called catastrophe. In vinblastine-treated cells, both the average duration of a pause (a state of attenuated dynamics where neither growth nor shortening could be detected) and the percentage of total time spent in pause were significantly increased. Vinblastine potently decreased dynamicity, a measure of the overall dynamic activity of microtubules, reducing this parameter by 75% at 32 nM. The present work, consistent with earlier in vitro studies, demonstrates that vinblastine kinetically caps the ends of microtubules in living cells and supports the hypothesis that the potent chemotherapeutic action of vinblastine as an antitumor drug is suppression of mitotic spindle microtubule dynamics. Further, the results indicate that molecules that bind to microtubule ends can regulate microtubule dynamic behavior in living cells and suggest that endogenous regulators of microtubule dynamics that work by similar mechanisms may exist in living cells.


1993 ◽  
Vol 70 (04) ◽  
pp. 676-680 ◽  
Author(s):  
H F Kotzé ◽  
V van Wyk ◽  
P N Badenhorst ◽  
A du P Heyns ◽  
J P Roodt ◽  
...  

SummaryPlatelets were isolated from blood of baboons and treated with neuraminidase to remove platelet membrane sialic acid, a process which artificially ages the platelets. The platelets were then labelled with 111In and their mean life span, in vivo distribution and sites of Sequestration were measured. The effect of removal of sialic acid on the attachment of immunoglobulin to platelets were investigated and related to the Sequestration of the platelets by the spleen, liver, and bone marrow. Removal of sialic acid by neuraminidase did not affect the aggregation of platelets by agonists in vitro, nor their sites of Sequestration. The removal of 0.51 (median, range 0.01 to 2.10) nmol sialic acid/108 platelets shortened their life span by 75 h (median, range 0 to 132) h (n = 19, p <0.001), and there was an exponential correlation between the shortening of the mean platelet life span and the amount of sialic acid removed. The increase in platelet-associated IgG was 0.112 (median, range 0.007 to 0.309) fg/platelet (n = 25, p <0.001) after 0.79 (median, range 0.00 to 6.70) nmol sialic acid/108 platelets was removed (p <0.001). There was an exponential correlation between the shortening of mean platelet life span after the removal of sialic acid and the increase in platelet-associated IgG. The results suggest that platelet membrane sialic acid influences ageing of circulating platelets, and that the loss of sialic acid may have exposed a senescent cell antigen that binds IgG on the platelet membrane. The antibody-antigen complex may then provide a signal to the macrophages that the platelet is old, and can be phagocytosed and destroyed.


2021 ◽  
Author(s):  
Lijuan Liu ◽  
Shengting Zhang ◽  
Xiaodan Zheng ◽  
Hongmei Li ◽  
Qi Chen ◽  
...  

Fusobacterium nucleatum has been employed for the first time to synthesize fluorescent carbon dots which could be applied for the determination of Fe3+ ions in living cells and bioimaging in vitro and in vivo with excellent biocompatibility.


Author(s):  
Ewa A. Burian ◽  
Lubna Sabah ◽  
Klaus Kirketerp-Møller ◽  
Elin Ibstedt ◽  
Magnus M. Fazli ◽  
...  

Acute wounds may require cleansing to reduce the risk of infection. Stabilized hypochlorous acid in acetic buffer (HOCl + buffer) is a novel wound irrigation solution with antimicrobial properties. We performed a first-in-man, prospective, open-label pilot study to document preliminary safety and performance in the treatment of acute wounds. The study enrolled 12 subjects scheduled for a split-skin graft transplantation, where the donor site was used as a model of an acute wound. The treatment time was 75 s, given on 6 occasions. A total of 7 adverse events were regarded as related to the treatment; all registered as pain during the procedure for 2 subjects. One subject had a wound infection at the donor site. The mean colony-forming unit (CFU) decreased by 41% after the treatment, and the mean epithelialization was 96% on both days 14 (standard deviation [SD] 8%) and 21 (SD 10%). The study provides preliminary support for the safety, well-tolerance, and efficacy of HOCl + buffer for acute wounds. The pain was frequent although resolved quickly. Excellent wound healing and satisfying antimicrobial properties were observed. A subsequent in vitro biofilm study also indicated good antimicrobial activity against Pseudomonas aeruginosa with a 96% mean reduction of CFU, when used for a treatment duration of 15 min ( P < .0001), and a 50% decrease for Staphylococcus aureus ( P = .1010). Future larger studies are needed to evaluate the safety and performance of HOCl + buffer in acute wounds, including the promising antimicrobial effect by prolonged treatment on bacterial biofilms.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Lena Dalal ◽  
Abdul Wahab Allaf ◽  
Hind El-Zein

AbstractSelf-nanoemulsifying drug delivery systems (SNEDDS) were used to enhance the dissolution rate of furosemide as a model for class IV drugs and the system was solidified into liquisolid tablets. SNEDDS of furosemide contained 10% Castor oil, 60% Cremophor EL, and 30% PEG 400. The mean droplets size was 17.9 ± 4.5 nm. The theoretical model was used to calculate the amounts of the carrier (Avicel PH101) and coating materials (Aerosil 200) to prepare liquisolid powder. Carrier/coating materials ratio of 5/1 was used and Ludipress was added to the solid system, thus tablets with hardness of 45 ± 2 N were obtained. Liquisolid tablets showed 2-folds increase in drug release as compared to the generic tablets after 60 min in HCl 0.1 N using USP apparatus-II. Furosemide loaded SNEDDS tablets have great prospects for further in vivo studies, and the theoretical model is useful for calculating the adequate amounts of adsorbents required to solidify these systems.


Sign in / Sign up

Export Citation Format

Share Document