scholarly journals A Novel Family of Serine/Threonine Kinases Participating in Spermiogenesis

1997 ◽  
Vol 139 (7) ◽  
pp. 1851-1859 ◽  
Author(s):  
Peter Kueng ◽  
Zariana Nikolova ◽  
Valentin Djonov ◽  
Andrew Hemphill ◽  
Valeria Rohrbach ◽  
...  

The molecular mechanisms regulating the spectacular cytodifferentiation observed during spermiogenesis are poorly understood. We have recently identified a murine testis-specific serine kinase (tssk) 1, constituting a novel subfamily of serine/threonine kinases. Using low stringency screening we have isolated and molecularly characterized a second closely related family member, tssk 2, which is probably the orthologue of the human DGS-G gene. Expression of tssk 1 and tssk 2 was limited to the testis of sexually mature males. Immunohistochemical staining localized both kinases to the cytoplasm of late spermatids and to structures resembling residual bodies. tssk 1 and tssk 2 were absent in released sperms in the lumen of the seminiferous tubules and the epididymis, demonstrating a tight window of expression restricted to the last stages of spermatid maturation. In vitro kinase assays of immunoprecipitates containing either tssk 1 or tssk 2 revealed no autophosphorylation of the kinases, however, they led to serine phosphorylation of a coprecipitating protein of ∼65 kD. A search for interacting proteins using the yeast two-hybrid system with tssk 1 and tssk 2 cDNA as baits and a prey cDNA library from mouse testis, led to the isolation of a novel cDNA, interacting specifically with both tssk 1 and tssk 2, and encoding the coprecipitated 65-kD protein phosphorylated by both kinases. Interestingly, expression of the interacting clone was also testis specific and paralleled the developmental expression observed for the kinases themselves. These results represent the first demonstration of the involvement of a distinct kinase family, the tssk serine/threonine kinases, together with a substrate in the cytodifferentiation of late spermatids to sperms.

1995 ◽  
Vol 308 (3) ◽  
pp. 915-922 ◽  
Author(s):  
K A Asamoah ◽  
P G P Atkinson ◽  
W G Carter ◽  
G J Sale

In cells insulin stimulates autophosphorylation of the insulin receptor on tyrosine and its phosphorylation on serine and threonine by poorly characterized kinases. Recently we have achieved co-purification of the insulin receptor with insulin-stimulated insulin receptor serine kinase activity. We now show that the co-purified serine kinase activity can be removed by NaCl washing and reconstituted by adding back the NaCl eluate. Reconstitution enabled higher serine phosphorylation than achieved with the co-purified preparation. Myelin basic protein was discovered to be a potent substrate for insulin-stimulated serine phosphorylation by the co-purified preparation, with the activity responsible having similar properties to the serine kinase activity towards the receptor. Myelin basic protein was also phosphorylated on serine by the NaCl eluate. Myelin basic protein phosphorylated by the co-purified preparation or the NaCl eluate gave the same set of phosphoserine peptides. The major myelin basic protein serine kinase activity in the NaCl eluate co-purified exactly on Mono Q with the activity that restored insulin-stimulated insulin receptor serine phosphorylation. These results provide strong evidence for the true separation of the serine kinase from the insulin receptor and the distinctiveness of the serine kinase activity from the insulin receptor tyrosine kinase and mitogen-activated protein kinases. The procedures developed for the isolation of the serine kinase and the establishment of an effective in vitro substrate should allow purification of the kinase. The protocols also provide flexible systems for identifying the functions of the insulin-stimulated serine phosphorylations and the respective kinase(s).


2018 ◽  
Author(s):  
Wei Liu ◽  
Aihua Gu

ABSTRACTIt has been proved that Benzo(a)pyrene (B[a]P) is mutagenic in somatic cells, whereas the adverse effect of BaP on male reproduction remains unclear. To investigate whether it can pass through the blood-testis barrier (BTB) and its potential reproductive toxicology and molecular mechanisms, mice were exposed to B[a]P (there are two doses, that is 13mg/kg body weight and 26 mg/kg body weight; three times per week) during 6 weeks and sacrificed 6 weeks after the final exposure to obtain B[a]P-exposed testis, blood and others. Electron microscopy analysis was performed to confirm whether the integrity of BTB and the ultra-structure changes in testes of B[a]P treated mice, which showed that the integrity of the BTB was disrupted, accompanied with the structure of sertoli cells seriously damaged, including the integrity of the nuclear membrane of the sertoli cells impaired and the basement membrane of the seminiferous tubules disrupted. X-ray imaging in vitro told us that BaP can overgo the BTB and gathered in the testis of mice. We found the significantly decreased expression of ZO-1, occludin, N-cadherin, vimentin and claudin-1 in the testes of B[a]P treated group by immunofluorescence detection. B[a]P induced BTB component protein decreased were also found in TM4 cells exposed to 5μmol/L B[a]P for 24h. We found a significantly decrease of testosterone level and a significantly increase of estrogen level in the serum of treated groups comparing with the control one by radioimmunoassay. TM4 cells, MLTC-1 cells and GC-2 cells was cultured with medium contains B[a]P. MTT Cell Proliferation and Cytotoxicity Assay, cell apoptosis analysis, FACScan analyzer, We observed apparent increase of TM4 and GC-2 cells apoptosis after expose to B[a]P for 24h. B[a]P induced TM4 cell, GC-2 cell and MLTC-1 cell G2/M phase cell arrest. In conclusion, these results suggested that BaP has an adverse impact on male reproduction, it can cross the blood-testis barrier and damage it, the component proteins of the BTB significantly decreased, it can also produce adverse impact on male germ cells.


2019 ◽  
Author(s):  
Willemieke M. Kouwenhoven ◽  
Guillaume Fortin ◽  
Anna-Maija Penttinen ◽  
Clélia Florence ◽  
Benoît Delignat-Lavaud ◽  
...  

ABSTRACTIn Parkinson’s disease, the most vulnerable neurons are found in the ventral tier of the substantia nigra (SN), while the adjacent dopamine (DA) neurons of the ventral tegmental area (VTA) are mostly spared. Although a significant subset of adult VTA DA neurons expresses Vglut2, a vesicular glutamate transporter, and release glutamate as a second neurotransmitter in the striatum, only very few adult SN DA neurons have this capacity. Previous work has demonstrated that lesions created by neurotoxins such as MPTP and 6-hydroxydopamine (6-OHDA) can upregulate the expression of Vglut2 in surviving DA neurons. Currently, the molecular mechanisms explaining the plasticity of Vglut2 expression in DA neurons are unknown, as are the physiological consequences for DA neuron function and survival. Here we aimed to characterize the developmental expression pattern of Vglut2 in DA neurons and the role of this transporter in post-lesional plasticity in these neurons. Using an intersectional genetic lineage-mapping approach, based on Vglut2-Cre and TH-Flpo drivers, we first found that more than 98% of DA neurons expressed Vglut2 at some point in their embryonic development. Expression of this transporter was detectable in most DA neurons until E11.5 and was found to be localized in developing axons. Moderate enhancement of VGLUT2 expression in primary DA neurons caused an increase in axonal arborization length. Compatible with a developmental role, constitutive deletion of Vglut2 caused a regional defect in TH-innervation of the dorsal striatum in E18.5 embryos. Moreover, using an in vitro neurotoxin model, we demonstrate that Vglut2 expression can be upregulated in post-lesional DA neurons by 2.5-fold, arguing that the developmental expression of Vglut2 in DA neurons can be reactivated at postnatal stages and contribute to post-lesional plasticity of dopaminergic axons. In support of this hypothesis, we find fewer mesostriatial dopaminergic projections in the striatum of conditional Vglut2 KO mice 7 weeks after a neurotoxic lesion, compared to control animals. Thus, we propose here that one of the functions of Vglut2 in adult DA neurons is to promote post-lesional recovery of meso-striatal axons.


1991 ◽  
Vol 2 (9) ◽  
pp. 691-697 ◽  
Author(s):  
M Ohmichi ◽  
S J Decker ◽  
A R Saltiel

To explore the molecular mechanisms of nerve growth factor (NGF) action, we have attempted to identify proteins that immunoprecipitate with the NGF receptor. An anti-NGF receptor antibody was developed that immunoprecipitated the 75-Kd receptor in PC-12 cells. In [35S]methionine-labeled cells lysed with nonionic detergent, immunoprecipitation with this antireceptor antisera specifically brought down several associated proteins, although prior treatment of cells with NGF produced no apparent change in the distribution of these proteins. However, in vitro phosphorylation assays of the immunoprecipitated complex revealed the presence of a serine kinase that phosphorylated two predominant substrates with Mrs of 60 and 130 Kd. Prior treatment of cells produced no change in the appearance of the 60-Kd phosphoprotein, but NGF did stimulate the appearance of the 130-Kd protein. This effect was observed with as little as 0.1 nM NGF and was maximal at 5 min, but declined thereafter. Prior treatment of cells with NGF did not increase the phosphorylation of enolase added exogenously to the immunoprecipitates, suggesting that this action of NGF may have reflected the hormone-dependent association of the 130-Kd protein with the receptor, rather than activation of a receptor-associated kinase. Thus the association of the NGF 75-Kd receptor with a 130-Kd protein may be involved in signal transduction for the growth factor, although the role of this receptor in the NGF-dependent tyrosine phosphorylation remains unclear.


1988 ◽  
Vol 250 (2) ◽  
pp. 509-519 ◽  
Author(s):  
D M Smith ◽  
M J King ◽  
G J Sale

Two systems in vitro are described that show insulin-stimulated phosphorylation of the insulin receptor on serine residues. In the first system, insulin receptor was purified partially from Fao rat hepatoma cells by direct solubilization of the cells in Triton X-100 and chromatography on wheat-germ-agglutinin-agarose. Phosphorylation of these preparations with [gamma-32P]ATP in the presence or absence of insulin resulted in 32P incorporation exclusively into phosphotyrosine residues. Serine kinase activity towards the insulin receptor was reconstituted by adding extracts of Fao cells. Prior exposure of the cells to insulin stimulated serine kinase activity towards the insulin receptor in extracts 7.2-fold. A receptor serine kinase activity enhanced by treatment of cells with cyclic AMP analogues was also retained in the reconstituted system. In the second system, insulin receptor and insulin-sensitive serine kinase activity towards the insulin receptor were co-purified from human placenta. The protocol involved preparation of membranes, before solubilization and chromatography on wheat-germ-agglutinin-agarose, by using gentle procedures designed not to disrupt a potentially labile association between the insulin receptor and the serine kinase. Serine kinase activity in these preparations towards the insulin receptor was stimulated up to 10-fold by insulin, and the stoicheiometry of serine phosphorylation was estimated to be approx 0.8 mol/mol of insulin receptor for phosphorylations performed in the presence of insulin. Thus a preparation of insulin receptor is described for the first time that is phosphorylated to high stoicheiometry on serine in an insulin-dependent manner. Conditions that facilitate recovery and assay of serine kinase activity are defined and discussed. These systems provide a basis for characterizing the nature of the insulin-sensitive serine kinase that phosphorylates the insulin receptor, and defining its role in insulin action and control of receptor function.


1994 ◽  
Vol 304 (1) ◽  
pp. 17-21 ◽  
Author(s):  
J F Tanti ◽  
T Grémeaux ◽  
E Van Obberghen ◽  
Y Le Marchand-Brustel

Insulin receptor substrate (IRS) 1, which is tyrosine phosphorylated in response to insulin, presents multiple serine/threonine phosphorylation sites. To search for a serine kinase activity towards IRS 1, immunoprecipitates from basal or stimulated 3T3-L1 adipocytes were used in an in vitro kinase assay. When IRS 1 was isolated from insulin-treated cells, serine phosphorylation of IRS 1 occurred, which we attribute to the kinase activity of the phosphatidylinositol 3-kinase (PI3-kinase). Importantly, in an in vitro reconstitution assay, an excess of the PI3-kinase subunit prevents this phosphorylation. Together, our results suggest that following insulin stimulation, PI3-kinase associates with IRS 1, allowing for its serine phosphorylation. This phosphorylation event could play a role in the modulation of insulin signalling.


Author(s):  
D. P. Bazett-Jones ◽  
M. J. Hendzel

Structural analysis of combinations of nucleosomes and transcription factors on promoter and enhancer elements is necessary in order to understand the molecular mechanisms responsible for the regulation of transcription initiation. Such complexes are often not amenable to study by high resolution crystallographic techniques. We have been applying electron spectroscopic imaging (ESI) to specific problems in molecular biology related to transcription regulation. There are several advantages that this technique offers in studies of nucleoprotein complexes. First, an intermediate level of spatial resolution can be achieved because heavy atom contrast agents are not necessary. Second, mass and stoichiometric relationships of protein and nucleic acid can be estimated by phosphorus detection, an element in much higher proportions in nucleic acid than protein. Third, wrapping or bending of the DNA by the protein constituents can be observed by phosphorus mapping of the complexes. Even when ESI is used with high exposure of electrons to the specimen, important macromolecular information may be provided. For example, an image of the TATA binding protein (TBP) bound to DNA is shown in the Figure (top panel). It can be seen that the protein distorts the DNA away from itself and much of its mass sits off the DNA helix axis. Moreover, phosphorus and mass estimates demonstrate whether one or two TBP molecules interact with this particular promoter TATA sequence.


2019 ◽  
Vol XIV (1) ◽  
Author(s):  
R.E. Kalinin ◽  
I.A. Suchkov ◽  
N.V. Korotkova ◽  
N.D. Mzhavanadze

2020 ◽  
Vol 11 (SPL1) ◽  
pp. 1278-1285
Author(s):  
Mohamed Yafout ◽  
Amine Ousaid ◽  
Ibrahim Sbai El Otmani ◽  
Youssef Khayati ◽  
Amal Ait Haj Said

The new SARS-CoV-2 belonging to the coronaviruses family has caused a pandemic affecting millions of people around the world. This pandemic has been declared by the World Health Organization as an international public health emergency. Although several clinical trials involving a large number of drugs are currently underway, no treatment protocol for COVID-19 has been officially approved so far. Here we demonstrate through a search in the scientific literature that the traditional Moroccan pharmacopoeia, which includes more than 500 medicinal plants, is a fascinating and promising source for the research of natural molecules active against SARS-CoV-2. Multiple in-silico and in-vitro studies showed that some of the medicinal plants used by Moroccans for centuries possess inhibitory activity against SARS-CoV or SARS-CoV-2. These inhibitory activities are achieved through the different molecular mechanisms of virus penetration and replication, or indirectly through stimulation of immunity. Thus, the potential of plants, plant extracts and molecules derived from plants that are traditionally used in Morocco and have activity against SARS-CoV-2, could be explored in the search for a preventive or curative treatment against COVID-19. Furthermore, safe plants or plant extracts that are proven to stimulate immunity could be officially recommended by governments as nutritional supplements.


2012 ◽  
Vol 2 (1) ◽  
pp. 1 ◽  
Author(s):  
Hidekatsu Yanai ◽  
Hiroshi Yoshida ◽  
Yuji Hirowatari ◽  
Norio Tada

Characteristics for the serum lipid abnormalities in the obesity/metabolic syndrome are elevated fasting, postprandial triglyceride (TG), and decreased high-density lipoprotein-cholesterol (HDL-C). Diacylglycerol (DAG) oil ingestion has been reported to ameliorate postprandial hyperlipidemia and prevent obesity by increasing energy expenditure, due to the intestinal physiochemical dynamics that differ from triacylglycerol (TAG). Our study demonstrated that DAG suppresses postprandial increase in TG-rich lipoprotein, very low-density lipoprotein (VLDL), and insulin, as compared with TAG in young, healthy individuals. Interestingly, our study also presented that DAG significantly increases plasma serotonin, which is mostly present in the intestine, and mediates thermogenesis, proposing a possible mechanism for a postprandial increase in energy expenditure by DAG. Our other study demonstrated that DAG suppresses postprandial increase in TG, VLDL-C, and remnant-like particle-cholesterol, in comparison with TAG in an apolipoprotein C-II deficient subject, suggesting that DAG suppresses postprandial TG-rich lipoprotein independently of lipoprotein lipase. Further, to understand the molecular mechanisms for DAG-mediated increase in serotonin and energy expenditure, we studied the effects of 1-monoacylglycerol and 2-monoacylglycerol, distinct digestive products of DAG and TAG, respectively, on serotonin release from the Caco-2 cells, the human intestinal cell line. We also studied effects of 1- and 2-monoacylglycerol, and serotonin on the expression of mRNA associated with β-oxidation, fatty acids metabolism, and thermogenesis, in the Caco-2 cells. 1-monoacylglycerol significantly increased serotonin release from the Caco-2 cells, compared with 2-monoacylglycerol by approximately 40%. The expression of mRNA of acyl-CoA oxidase (ACO), fatty acid translocase (FAT), and uncoupling protein-2 (UCP-2), was significantly higher in 1-MOG-treated Caco-2 cells, than 2-MOG-treated cells. The expression of mRNA of ACO, medium-chain acyl-CoA dehydrogenase, FAT, and UCP-2, was significantly elevated in serotonin-treated Caco-2 cells, compared to cells incubated without serotonin. In conclusion, our clinical and in vitro studies suggested a possible therapeutic application of DAG for obesity, and obesity-related metabolic disorders.Key words: Diacylglycerol, intestine, obesity, serotonin, thermogenesis


Sign in / Sign up

Export Citation Format

Share Document